INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Beil & Howell Information Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313/761-4700 800:521-0600

Order Number 9132521

A structural engineering software development environment

Zhang, Hong, Ph.D.

Purdue University, 1991

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

4

Graquate School Form 8 PURDUE UNIVERSITY
(Revised /89 GRADUATE SCHOOL
Thesis Acceptance

This is to certify that the thesis prepared
By Hong Zhang

Entitled
A STRUCTURAL ENGINEERING SOFTWARE DEVELOPMENT ENVIRONMENT

Complies with University regulations and meets the standards of the Graduate School for
originality and quality

For the degree of Doctor of Philosophy

Signed by the final examining committee:

/fq/ g (7/ //V\ , chair
Bk&; o WAT

AN l—e

a—
/-
Approved by:
Tbrrotel 4 T rie € Lol 29 177/
Department Head Date”

Ois

This thesis 23 is not to be regarded as confidential

Wp. OL en ¥/49

Major Professor

o
i

A STRUCTURAL ENGINEERING

SOFTWARE DEVELOPMENT ENVIRONMENT

Fe *z‘\

A Thesis

Submitted to the Faculty

of

Purdue University

by

Hong Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 1991

ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to his major
professors, W.F. Chen and D.W. White, for their support, best guidance,
encouragement, advice and assistance during the course of this research.

The author would like to express his sincere gratitude to Professor H.E.

Dunsmore for his guidance, advice, and assistance in the aspect of software

engineering during the course of this research.

The author is thankful to Professors C.T. Sun and R.H. Lee for their
helpful comments and suggestions during the course of this research.

The author expresses a deep appreciation to his wife and son for their

endless endurance and care.

P

‘,.Miwk\

il

TABLE OF CONTENTS

Page

LIST OF TABLES.....ootttcriieeieeeeiereenererseterteettesestteisesssaesesseessssssssssessesssssssnnssns xi
LIST OF FIGURES.cocitiiiiiiiiriiietiieninnenteseeinnerieersesseseeessssaesssrorssenmsssssssassasssss xii
ABSTRACT ..ottt crsresseresssessesssssessss s sssessssasanstsnnnsnnsssssssssssssananes xvi
CHAPTER 1 INTRODUCTION.....ccitiiiiririeniieetiirincinnriennesersesssssessssssnnsesssnsens 1
1.1 A Software Crisis in Structural Engineering Computing........cccoovvecrvnnians 3
1.1.1 Instructional SOTtWAare....cccccccvivieiiiimiiiiriiiiicneiiirineneeerenneresissssreneensans 4

1.1.2 Research Software.......ccccccieceeiiiiiemmerniiiiiiiiinecsniaieeerersiienosesssnees 5

1.2 Software Reuse and Domain-Specific Environments.....c...coceeveeiviccrerinnnnnn. 7
1.3 A Structural Engineering Software Development Environment.............. 10
1.3.1 MOtIVALION tevierrirrrernnnnreerenieeresesoseenmesrosesnrensessnecnsessesessssesnsiossesnane 10

1.3.2 Development Methodologycoccocviiiieiiiiiniminniuncinenniinnneniessssscesssenans 10

1.3.3 Design PhiloSOPhy.....ccovviiiiiiiiiiiiiinniieniiiniiniiiniiiiineieineeeessisisissscennes 11

1.3.4 Featlres cccveciiierrirenrerneencrernnnrresrssssrsisrsnsssresssessusssesnnsesssnarosstsasusosarnos 11

1.3.5 Benefits cuucvvereeccrecciiiinnnininnnnincensieneaniieiiiiiiesiiiisesissnisiisee crreennsssenies 12

1.4 Components of the SESDE.........cccccoimiimmirriiiniinnieienrineeiiinissnssnmneeneneens 12
1.4.1 Classification .ccccciieiemrereiiieriiiinicciiceiinniiieieeresresssneereesesssssssesessessss 12

1.4.2 A Graphical User-Interface Development System.......ccccccervuvernnanee. 13

1.4.3 A Database Management Systemccccccvevrccvreiniirnnrcresnnsesesnranssscnes 15

1.4.4 An Artificial Intelligence System.....cccccevivriiiiveriiinnnnneennnnenniennenninnn. 16

1.4.5 Object Classes for Engineering Computing.....cc.cccceevveeirenrivnnnnnnnns 17

1.4.6 Object Classes for Structural Engineering Computing......c.cceuuu.... 18

1.5 Domain-Specific CASE To00Is........ccrvmummmniienieiicsniinniiiencsenrceensmrereesmeaiisen. 20
1.5.1 A Tool for Graphical User-Interfaces.........ccceecerririrrierinnieicnnnennnnnnes 20

1.5.2 A Tool for Reusable Component Libraries......ccocceiveiviiriervnnnnnnnnanes 21

1.5.3 A Tool for Application Developmentccccccccreerrrnererencsicrnncnnnnnn. 21

i Page
1.6 Objective and SCOPE ..cciiiiieriivrrerrnrisereeererirerieueeieseersesneneserrensessnrsnsronssens 22
1.7 Organization of the Thesis...cccoivieiieiiiiiieiirrii e 23

PART ONE
OVERVIEW OF SOFTWARE ENGINEERING TECHNOLOGIES 24
CHAPTER 2 BACKGROUND AND CURRENT ISSUES.......ccccccevrrrrrrennneenene 25
2.1 The Software Life Cyele ..cuuirrrirereriininiiiiiiiimiiieeneniisieimeeeernn e 26
2.2 Characteristics of Well-Engineered Software........cccoeeevviniiivivniiiriennnnnnnens 28
2.3 CUrrent ISSUES....ccciiiiiiiiiiiininiiiieiiiniessttiiiieiiesrsstassnsssresssssesesssssssiansanssee 29
CHAPTER 3 SOFTWARE REUSABILITY ..coooiiiiiiiiiiiirnreeeccccennnineesee 32
3.1 The Concept of REUSEccoevrvrrerecsirinnenisiseiimmmieniciiiiiniiisssmenssnsen 32
3.2 Characteristics of Reusable Components......cccoeoriecvvsniniiniiiiirncrneecerinennns 34
3.3 Design of Reusable Components......ccceeverrrirunnioriieaicsseriieniieeensinneeeenenen 35

3.3.1 Functional AbStractioncoeeevvvrnsninnriririiiiiiineencinniinniieieccnnnn 36

"i\ 3.3.2 Data Abstraction...........ccvnuene beseertterettererttnnrenarettsarattesnsteeenenrrnrernens 37
3.4 Software Reuse and Life Cycle Modelscccceeveriieiiiiiiiiiiecinciricicennnncnnnees 39
3.5 Reuse of ComPponentscccvvvreiiiirrisiiiniermmuiiinniiiiiiinmnieninisiisenses 40
3.6 Support of Reuse....ccccvviiiirenniiiiiimeiniieiiniiciiininii e ssrsaaneseees 41

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING........ccoovvuvrrerrreirinnnenne 43
4.1 Characteristics.....ccoeeersrerissvrrersiranes eeeererterartrutstraterarassesssssessassssressssassnnes 43
4.1.1 ADSEractioncocvvevivcnriniscsvissessiieniennnnnnniennniiseniisiinmanes 44
4.1.2 Encapsulationcccecevirevnnnnnene eeeteestanasertnaretanernettnriesstennareesatnrnneniases 46
4.1.3 PoOlymoOrphisSImi...cccccruereecrieiernisssisisrererneiionseiierneriernimmmmmsresissmsmssns 47
4.1.4 Inheritance......cccrvviiiniisinisiiiinencrinennnninemmiiaiceneeennen 48
4.1.5 CoOmMPOSItION coovieriieirertinriririienrsssissenieneniisieriesineceererersssmonioeseesressess 50
4.2 Programming in the C Language....c.ccecvrrrvrvnnieemmrerninniciiinininiiinne. 51
4.2.1 Representation of Object Classescccccevrreeiirimriiiisiiiniiissssssccsionianne 53
4.2.2 Implementation of Message Passing....ccccoccovrvirivsiiivrrirrrnennnniiinnnnnnns 56
4.2.3 CLOOP: A General Utility for OOP in C......cocevvrirvviiiiiiiinnnneeennn 62
4.3 Programming in the C++ Language ...ccccccieiierniiinernniiinsininevneessesninnenens 71
4.3.1 Support of Abstraction and Encapsulationccccceeverveveriiinnnnanen. 71

Page

4.3.2 Support of Inheritance and Polymorphismccceevrrrevnviiiiiinnnnnnna. 73

4.3.3 Support of Composition ...cceeveviiiniiiiiiiiiiiieiiiiiriecrerirrnsierinereenes 74

4.4 OOP for Engineering Software Development......cccceveeveivviiniiinieinenncennnne, 74
CHAPTER 5 SPECIFIC ISSUES RELATED TO

THE SESDE DEVELOPMENToouciiiiiiiiitviricireceneresenveneneeenns 77

5.1 Design of Reusable Components........cccovvvvveiiiiriinmiicricniiinninieceninmiiessnennn 77

5.1.1 Object-Oriented versus Functional Design......ccccvvvvvurnvecceriniriannnn. 77

5.1.2 Inheritance versus Compositionccccvcriiruriiiiivnvencrsiennrenicreinnicenn 81

5.1.3 SUbSYStemMS...ccvieiiiiiiiiiiriiiiiiniieininiieinreeniiereaesniiererieseteeteeesretsesessanieans 83

5.2 Applications Developmentccocveriiririiriiiiiiiiinieriniiiinnniniecnee. 85

LIST OF REFERENCES......coccciuumertitriecerimmreseecsssiesiosesessescssensssssnrsssssssssssssnsnns 86

PART TWO

A GRAPHICAL USER-INTERFACE DEVELOPMENT SYSTEM......cccooeeuunnnn 89

CHAPTER 6 GRAPHICAL USER INTERFACE TOOLS......ccccccvveveviiriirennnnnn 90

8.1 INtroductioniccecviiiieiiiimimiiciiiiiiiiinii e ese s asans 91

6.2 The Need for GUI To0lS....cccciiiiiinnniniivneninivenienrineiosiinisrooncimmnnessssmosseenne 92

6.3 Current State of GUI Development Systems........ccceeersrierivvenneeenvenveseneens 94

6.3.1 User-Interface ToolKits.....cccceverericerimminniiineninieemiicnienieccnniiineaniienn, 95

6.3.2 User-Interface Development Systems..........c.evvverrercecercnieeneeeereecseerens 95

6.4 Issues in Design of GUI To00IS....c.ccceiiiiriimmniiiiiiiinmincciciiiiinniinnneneescicneieen 99

6.4.1 Semantics of the Interface Component............covvvemruuvrriiiirinrrennnee 100

6.4.2 Communication and Control......ccccicvriiiiiiieniiiinininieiiinniieneseesinsasin 103

6.5 Case Study: Macintosh ToolS....c.cccccveiricininnreeiiiniiinieieiiriniiiiinninnneiene. 105

6.5.1 Macintosh ToolboX.....cccoviiiiirrrmuiiiiinniiinieeniinininmmes, 106

6.5.2 MacApp FrameworK.......cccoevvvnnnummmmnenieiiiiinincnininnnienesicinenneenne. 108

6.5.3 HyperCard and HyperTalK......occcccuuirririiiiisiinininneieiisiinnnnnnnnennnes 110

6.6 Case Study: The X11 ToolKit ...cccoeeerireiciierreinineninneeinnennneeneeneeneeseeereesnnes 113

8.8.1 OVEIVIEW .iiivvuiiirimmieiiniinnirissiiensiiessnssreroresssssssesssssssssrssssnsosssssasssns 113

8.6.2 Widgets...coceveriiriirimnminiiniiniinisnuininiioiiinmemmsiiesissmmmmeseissssssssssssensns 114

Vaa “q

o

vi

Page

6.6.3 Widget Semantics.......ccovviiiiiiiiiiiiiiniiiiinrs s s 115
6.6.4 Event Handling and Callback Mechanism.........ccccccvvenierveninvnnnnnn. 116
6.6.5 CritiqQUe...cceueiuniieniiiiiiiiiiiiiiiii e e 116

6.7 Case Study: GRAFIC/CES8S..........ccocvirriniiiniiiriiinneneresseensrssnnsseneees 118
6.8 OSE /MObif.ueciiviiiiiriniiiriiiiriiiniiiiiiiric e sasressssabeesssasae s e ssaans 119
B.8.1 OVEIVIEW weeueeiiniriiiiiericenneeeenuoreeerinnensssssessesessssssanitnssessrssnssssssrsosnas 119
6.8.2 The User-Interface Language........cceeervreririinrvrecrennereenssssserssniocsinnns 120
6.8.3 The Motif Resource Managercccccoreieiniiinnninsrenneenenssssssvesrsssenenes 125
CHAPTER 7 DESIGN ISSUES IN THE DEVELOPMENT OF GUIDES....... 128
7.1 Justification for the research.......cccccieirirveiiiiiiiiiiieiveenrerresssesssssnesseneaes 128
7.2 Basic Requirements..........cccvvrmmmmiiiiiiiiiniiniimmnniininiecsnieniene. 130
7.3 Design DeciSions.....ccoviiiuiiiriimiiiiiiiiciiiiiiiiiiniiiiesinnisnnesises s sasssens 131
7.3.1 Black-Box versus White-Box Frameworkccouvvevceveinsecssisienanns 131
7.3.2 Windowing-System versus Graphics-System Basiscceceeniennnenn. 132
7.3.3 Design Methodologycoevviiiiiiierieriiiciiinsinisvsnnnesnniiesisimssssenissenienes 133
7.3.4 Internal versus External Control.......ccccccirvenninninrnivennnrireicrisronnenes 134
7.3.5 Agent Semantics.....cccecvireeiiirimmnmniiiiiieeniiiennnierennsmsiesisenssssisissasnenes 135
7.3.6 Language Bindingcccc.cccvvirrrrrrmnmeiiiiniiiviceninnincennnenn ressrsnesresaraanes 136
7.4 The HOOPS Graphics Library......cccccoriivivimmmmmnsnnicsnsiesssssissssssssssessscsens 137
CHAPTER 8 DESCRIPTION OF GUIDES......cc.ccovennnnercieissencrsssssssssessaseses 141
8.1 Architecture of the System ..c.ccccicuriviiriemmriserinnieniiiisiesiiresssisssesesssnenss 141
8.2 Callback Manager.......cccecviiiiineniiinnresiceneneresorssssransssssns coerrareransesnsenssieres 143
8.3 Event Manager ...cccccevuerevriieiiininriosisceniesnnesssssessssses vererrsesreesienene seresareens 144
8.3.1 Processing of Raw Eventsccccccvviiiiiciicniiciicnnnrennnnnnnnnnsessesssesennnns 145
8.3.2 Handling of Basic GUIDES Events....coccoiiiciiiimeeniriccranrsresciisassiones 147
8.3.3 The Event Register ...ccccceeieiiiivreveririiriiiiiiiieeriscessnneenssessssssesnssssesees 148
8.3.4 Grabbing of Events...cc.cccciveernrennreerciecniiiecniisienimionsrnrsessssinscisse 148
8.3.5 Queueing of Events from a File.......cccccvviinnireniinnnecreninisssricennnnae. 149

8.4 GUIDES AQENUS.cciuuuiiureeniriiiciiinriiiiieienreeesessssesessssssssssssssssssssssssssessssssnss 149
8.4.1 Agent Classes and Agent Groupsc.ccceveeeererecsrssssesssescsssssressenes 150
8.4.2 Agent ComposSition...ccccoieriimeenrrrerrrensescernnnerresssiscsrsssesssssessssssesssnses 153
8.4.3 States of Agent INStancesccccvceecciriniiiicciiiiciiesiesrenmneeseoisennnen 154
8.4.4 Agent Attributescovevmrviriiiiiiii e, 156
8.4.5 Agent Semantics.....cccoveriiiriiririnieniuiiiicsssesisionsisicsssessssereeessesssssessens 158

8.4.6 Description of Each Agent Classccovveviirsciiinrenirennncennnnnnnenne 161

s

’f 4

vil

Page

8.5 Graphical Utities...cccuuureiirieiiiirieniiniininiinnieriiiioiiinneiinnesssesesmmmeieenn 167

8.6 The Description Languageccocereviieniiiimumienniiniiiiiiinenciiennninennnn, 168

8.6.1 Lexical COnVEntiOnS ...covecreuvreririeeeremmneeiniiiririeeeismmiienmecinierreeeenmnmaae 169

8.6.2 Statements and Compound Statements.......c.ccccervviviinueveereannnnean. 170

8.6.3 Defining an Agent InStancecccceveeviiciriiniiiieniniieenineeeereeeecceeennennns 170

8.6.4 Defining a Composite Agent Instance......ccccccvvcevrriiienriceiennnrennnns 171

8.6.5 Defining a Restricted Agent Instanceccoooveviviriiininiiniiiniinnnnnns 172

8.6.6 Connecting the Agent Semantics.....c.ccccvevervriireririninnieiiiieieineenenenn. 172

8.6.7 Defining an Agent Style ...cccovvrrrvureiiiiiiriiiiiinniiinnniennneiieii. 173

8.6.8 Other Features....ccooniirimmminiiiniinniiiniiiineiimesen 173

8.6.9 A Complete EXample ..ccuuererieiieiiiiniiiiierininiiiiiiniiiiiniiieininnnn. 174

8.7 GUIDES versus Motifccoiiiieiiniiiimrnniuniiniisininimemmieseiimmsenseme. 179

LIST OF REFERENCESccorvirrtiitiniinnreeinireccnressssssssssncssnssannassssssssssssnssssnsns 181
PART THREE

OBJECT CLASSES FOR ENGINEERING COMPUTING.........cccovvermmmurrnnnnnee 183

CHAPTER 9 THE SESDE OBJECT LIBRARYcccoecummmuuvururrunnnrnrnnnninncninens 184

9.1 Object-Oriented Engineering Software Development...........ccccevvrnennnene 184

9.1.1 Literature RevieW.....ccccceveiiiimmminiiiinniniiiinmiiiinncninm e, 184

0.1.2 Reusability cccceeeeerrreerunenmicisiciiieniecnneeresiosssseisnssinnmmosssessssarsnesssssss 187

0.1.3 EfBCIENCY . cotvrrrrrreeriernrrrormmmaeisisssosnisioniesssssssossssnssrnsstossssossssssrsassonsss 188

9.2 Object Classes in the SESDE Library....cccccceeiiiienenn. cossssrres reserresssenenarens 189

CHAPTER 10 BASIC DATA STRUCTURES AND UTILITIESeuuuueeee 192

10.1 An Exception Handling Class........cccccerreriinrenieereenneeinennecnniienneenieeenseenes 192

10.1.1 Handling Error EXceptions......ccccccceervvirunnnnieiisnrsssseneanereensrennnses 193

10.1.2 Handling Warning Exceptions.....cccccceeveciimrenirnniiinseiicrienennnscennens 196

10.2 Parameterized Array Classes....cccccccviieicniisnernncnnonnencssseiesisreesssnnisssmnenes 197

10.2.1 The EztArray(T) Class........ceveeererennrrncsrinnsnessessansssessenessansenns 199

10.2.2 The Bag(T) Classcccocrvrurrerirrreenrsercisrusssuncssensssecssrsesssessssssessaes 203

10.3 A Parameterized Vector Class.......cccccervniisrrrennnenniinereenenierennesenenennnnaen. 207

(f“a’h\t

Page

CHAPTER 11 OBJECT CLASSES FOR FULL MATRICEScccccvvuvrvunnne. 211
11.1 INtroduction .cicceceecieneiierisriienerereerienreerscseenresresoerneeserncssnsssressesnnersnnsss 211
11.2 Procedural Libraries for Full Matrices......cccccecvicrecinrnieniiiieniniiinnninenenes 213
11.2.1 Abstraction: the Representation of a Matrix ...ccccoeeeveiriivinnnannns 213
11.2.2 Dynamic Creation and Destruction of a Matrix.........cccceeeunnennn. 215
11.2.3 Utilization of Matrix Characteristicsc.cccceeverriivrnenrcriiiennnennnnns 216
11.2.4 Ease of Use and EXpressiveness.......cccoevirieiiiieiiiiiiinineneerensnnennnes 218
11.3 Overview of Full Matrix Classescccceeiiirreerneveriieiiiciinineneeenennnnenieensns 220
11.3.1 Classification ...ccccccereieeieeniineniniiinneninneiinninsiiiiieenirmmeemsesnennsns 220
11.3.2 Matrix Manipulation Functions.......cccccoevvvinnninniirnieiiiiniiinnnnnn. 221
11.3.3 Use of Two Interfaces for Matrix Operationscccouvurvvrruennnne 222
11.3.4 Extensibility ...ccccccrriiiiriiiiniimiiiiiiiieninininnienniieenemnes 224
11.4 Design of the Matriz Classcccccmeuiicniiiiereieneeenieciriniiniinersienennnneeses 225
11.4.1 Matrix Representation....c.ccicceevieeriiciinniimmiiiinnncirnnieiniinneinecinonsnns 225
11.4.2 Matrix Operationsccccccrervveercrcssrinnnnnimeemiiiiineiiimmieccsienmesnons 228
11.5 Design of Derived Classes......ccccceiiiniiiiiieiiienirersisnsenneniienneeeecenescossennennse 230
11.5.1 The SMatriz Class......ccccreerrrmerieciiieniininmmuscsiensiscnmacisesssessnnannness 231
11.5.2 The LUMGLrsz Class ...cccecceereerevecreveeansansssossessissseseonessessosssessnsases 231
11.6 Benchmark Testing and the Matrix Calculator...........ccccvvuvvrvvveerernnncen. 234
CHAPTER 12 OBJECT CLASSES FOR SPARSE MATRICEScccceeeveeeee 241
12.1 INtrodUuction....coceeeeeerenreernrrrennnnnnceinesseeiieeieaeiensssssssesssssessmssscassssnesseessses 241
12.2 Sparse Matrix Manipulation in Procedural Languages........cccccocerienee. 242
12.3 Overview of Sparse Matrix Classes........c.cccoevvreiriiviiniiennvienneccrnisnennes 247
12.4 Design of the Sparse Classcccvrevuunrrerriiiiiiirnicnnninenienieniieneae, 248
12.4.1 Representation of Sparse Matrices.......cccoccvvmuuuruereereiiiscrissonirnces 248
12.4.2 States of Sparse ObJects.....iiiiieiiiirniiniiiiniiiiiiniinnnnrcnnneenienesns 248
12.4.3 Properties of the Sparse Class.........ccocvviiiiriiiiriiiriiniiernnnnncenecennes 251
12.4.4 Classes Used with the Sparse Class......cccceeeeerureinnneenensererernencarns 251
12.4.5 Interface of the Sparse Classesc..cccccvvtvrerrreunnereruenensriisieiinnnens 252
12.5 Design of the ActiveColumn Class..........cccuvivveirreeeeeenniennienseeneisessionsens 254
12.8 Design of the SGraph Class.....c.cccccvveviiireiineieenriiiniiiniuinnnecuiensonsnes 255
12.6.1 The Graph-Based Sparse Storage Scheme.........ccooeuuuurerrerrereennns 256
12.6.2 Determining New Nodal Numberingccccceeeeiiiisiiicnnnnnnnenennnee 257

12.6.3 Formulation of Matrix Decomposition......cccoeeeeenennniiiiiinaninid ...259

Page

12.6.4 Implementationccccevveeeeeiriiniiieniiiiiiienieninrreieeesresecesseeeseesnenens 259

12.7 Testing of Sparse Matrix Classes......cccvevrivivreniirireeirinnieieenieneniiniennneeees 263
LIST OF REFERENCESccooottittiiiiriieieeeetterninrceeeeseertanstsessernsnsesesessensannnnns 268
CHAPTER 13 THE SESDE DATABASE MANAGEMENT SYSTEM........... 270
13.1 The Need for Database Management Systems........cccccuvvreerceierrarenssannnns 270
13.2 Basic Requirements......cccccveuveenisisiniineinnmemeiiinionnemnmieresssesisossseneeersess 275
13.3 Older Database Management Technologies......cccccevruruirecirvvennireereennnen. 277
13.3.1 File Management SyStemscccccevrueurerisscrinnrenrierssnnnessonescennnenses 277

13.3.2 Hierarchical and Network Database Management Systems....... 278

13.3.3 Relational Database Management Systems.........cccccevrceerinencnnnne. 279

13.3.4 Problems with Older Generations of DBMSs......cccoceeeervvevnrennnee. 281

13.4 Object-Oriented Database Management Systems....c.cccceeuuuvueiriiirinnnne. 283
13.4.1 The Motivation ..c.ccvveiiiriinniciiiiinniiiisiioineceescssconerramncsss 283

13.4.2 Distinguishing Features.......cccvvvvcvirisesceriiernmiicinieeeisessncnsnnnnnonens 284

13.4.3 Implementation Approaches.......cccevivviciiiiiiirecrnnrierneevenuennesneeenens 287

13.4.4 Limitations of Current ODBMSS....ccccivirierrrennereusseisivnnecreennoronne 2900

13.5 Engineering Datac...cicviveiiiiiemnrnninnniiiiiiiiiiecimnnseenes 293
13.6 Overview of DBMSs for Engineering Software.....c...ccccceevrviriniiinennnnn. 294
13.7 Integrating an ODBMS with the SESDEcccoovvvrvuiieirireinincccrencnnnnen. 296
13.7.1 A View Transformation Manager........cccccvvvvniierrerenniirecninnnneeennas 297

13.7.2 An Input Manager.....ccccocereerinercssvnssissesssossssnecssssstnsocrsssrssseserssess 207

13.7.3 In Core Object Managementcccovvumunnuenrrnrnernieneeiiicsssunnnns 299

LIST OF REFERENCGES.....c.cccccnniiiieiiciniinniammnmeinioniciecimnmisssmressesssmesssessarssss 300

CHAPTER 14 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER WORK ON SESDEcccociiiinnnnnniniininnnenn 302

14.1 The Problems and the Solutioncccceveeeriiiievvernereinreniniiiiinisiiinisnininens 302
14.2 Summary of the Present Work on SESDE........cconveerrerieneeiieeiniivinnnnne 305
14.2.1 The Graphical User Interface Development System................... 305
14.2.2 The Generic Object Class Librarycccoevervevrerevernernnenennennnnnnen. 308

14.2.3 The Object-oriented Database Management System 307

14.3 Specific Recommendations for Follow-up Work on SESDE 308
14.3.1 Long-term Taskscccovirriimuiiiiiiicininiiiiinimmiieereeneerenieenenreeenenss 308

14.3.2 Short-term Taskscccoeviireuiieiiiieiiiiiiriiicrnniiccreseeereniieeneeenenannes 310

VIT A ottt sturnars e e s et tsesseis s et renesnea st eanssnesssessesssssnnnsssssessrennnnnssnes 312

x1

LIST OF TABLES

Table Page
8.1 Callback lists and agent mode changes.........ccoeevveeriiiiiiniieiivvenneenneneecenennes 159
9.1 Object classes developed in the present Work.........ccoeeevnvvinmmmvennneneenenreeenens 190
11.1 Interface of the Matriz class.......covuueermirvrriiurierreermniniiiininnicnsnnn 229
11.2 Interface of the SMatriz class.......uueeiriveriiiiiiiiniiniiiriiiiinie. 232
11.3 Efficiency of S = D * B (Case 1, 2000 operations)cc.ccevuerservuerennenene 238
11.4 Efficiency of S = BTD B (Case 2, 1000 Operations)oeeeveersrrrssarerersecne 238
12.1 Comparison of efficiencies of Sparse classescuueevvveviriiiieniiiiiiiiiiiissnnnns 267

x1i

LIST OF FIGURES

Figure Page

4.1 Linowes’ approach for property inheritance (from Linowes, 1988)............. 55

4.2 GUIDES’ approach for property inheritance......ccccccceveriririiernneriinniininennnnene 56

4.3 Message-passing function Send (from Linowes, 1988).....ccccvvvriuvniuennnen. 58

4.4 The definition of a self-sufficient object class (from Meyer, 1988).............. 59

4.5 A Message passing function of GUIDES......c..cccovvrrveerrrtniensirrerisenrenseereessones 81

4.6 Data structure of a general object class in CLOOP........cccoieiiiiiiciininne eeeeee83

4.7 Memory organization of an object of a derived class, class C........ccceevevueene 64

{\ 4.8 General form of a method.......c.ceevveeeiviiiviieicicniiiresnsinsensssescsseessnensnsenns 66
) 4.9 Method-dispatch table for a derived class, Class C.....cccoveerivivernnvnnnniicesenns 67
4.10 Class-dispatch table for an application.......c.ccoiviiivuriiiiiiiiinninicnnmerniicnieenens 68

4.11 An abstracted representation of SendMessageTo........euueriirinirvvnrersirionrrenns 69

5.1 Functional design of the Root component........c.cccivriniirisensririesercsrnensens eeess9

5.2 Object-oriented design of the Root componentcccccveirrrrvrcenrereerssssssesenns 80

6.1 A simplified view of an application that has a GUIL.........cceevvvvriirirrrrennennns 100

6.2 Event handling with Macintosh ToolboX......cccuueureeiiiiiirririinrveserssscseieeraenes 107

6.3 A Macintosh resource filec.coovuvrrireriiiiiiiiiiiiiniiininiieeninee, 109

6.4 A HyperTalk Script .cccceeviiiiiiiiiiiiiiiniicneiniiiiimnmieimsmmeseeisisems 111

6.5 Dialogue boxes invoked by the (a) ask and
(b) answer commands of HyperTalk.......ccocceriiernrennieniennnnecninninsneccnnnnne 112

Figure Page
6.6 Class hierarchy of the widget set distributed by the Project Athena 115
6.7 An implementation of the Goodbye world application

with the X11 Toolkit....ccovvrerrmreeiieiiiiinininiiiiiiiieiineenen. 117
6.8 The Goodbye world application ...icvvvucreereeeniiiirnmeeriienriesiotneeneerenrerereneinns 118
6.9 A sample Motif UIL module.....cccccvvveirieicreiiirimmnninniiniiinnnnninnenimeeneen. 122
6.10 Setting up a user-interface specified with UILccoovvrvrrviviniiiiinnnnnniennennns 126
7.1 Hierarchical structure of HOOPS segments for an application

which displays a car in tWo VIeWS c.ccieeurreeerinniioiniiiiiiimmeniiinononsieennoienness 138
7.2 Raw events identified by HOOPS......cooiviiiirrmminiiiiciirmmmiiiiiininneninnnn, 139
8.1 The conceptual model of GUIDEScooveeriiiimmiiiiininicninnisicinininiinisin. 142
8.2 The form of GUIDES callback functions........cccccevvvureieensnnerenncnnnnreeninnees 143
8.3 Basic events of GUIDES........c..cevtviiriiiviiiniiiisieniiinnniiiennenineniieneneieenen 146
8.4 Agent class inheritance hierarchy of GUIDEScccocervrvimirrimrnneniiininnenenens 151
8.5 Semantics of the Button agentcccocvvvviiiriiivvciniiiiiiiiiniiinicneiiininn, 160
8.6 A modified version of the Goodbye world applicationceceeevvervenereennes 174
8.7 The C code of the Goodbye world applicationccceeersvnureiiinneecssvinnne 175
8.8 The description file of the Goodbye world applicationcouueererrvrnennn. 176
10.1 The declaration of the ErrorHandler class.............ccouureeervveeecvrnrnnnennennee, 194
10.2 Use of the ErrorHandler in the Matriz class.....cccovevvurremmereereensiirinnnnnannne 195
10.3 A simplified version of the EztArray(T) class declaration..........cccrrueeneen. 200
10.4 Declaration and implementation of the StringEztArray class 201
10.5 Constructing loops over array elements........ccocovsmurenrieereiennisrneeenesenennns 204

i F, :
A,
i

Xiv

Figure Page
10.6 A simplified version of the Bag(T) class declarationc..ccecerervrerveriuenne 205
10.7 Declaration and implementation of the StringBag class..........cccceeeueen..... 205
10.8 A simplified version of the Baglterator(T) class declaration 207
10.9 Constructing loops using Baglterator objgcts ... 208
10.10 A simplified version of the Vector(T) class declaration...........ccceererruenee. 209

11.1 A simplified version of the MATRIX class declaration (from Lee, 1989)..219

11.2 A simplified version of the Matriz class declaration.........ccccevvervvrnvevnnnnnnn. 226
11.3 A simplified version of the LUMatriz class declarationccceervrvvvennnnnen. 233
11.4 An illustration program of the LUMatriz classccccevvvverreiiiierniiiiincecnnens 235
11.5 The C++ benchmark testing programs for Case 2cccceerrervevvervnernrereens 237
11.6 A script shows the use of the matrix calculator Maccceouvevereereeeerenninen 240
12.1 Specification of a set subroutines implementing the skyline scheme........ 243
12.2 An object-oriented design of a sparse matrix component in C................. 245
12.3 A simplified version of the Sparse class declarationccccevvrenrneevccreecnenns 249
12.4 A simplified version of the ActiveColumn class declarationccereernee. 255
12.5 A simplified version of the NodeTable class declaration...........ccevveeerrnennes 262
12.6 A simplified version of the SGraph class declaration........ccoevvuvevnverreeneenens 263
12.7 The mesh of the testing C8€.....ccccccirrircrrnrennniineicssssiesssersnsiersessorsnnrersssses 264
12.8 An excerpt of the testing program for Sparse classes........coeevrrisiiinnnnnnnnens 265
13.1 Basic relationship: an application with a databaseccoceviuunnriinnnnnan. 271
13.2 Typical configuration of an integrated system.....c.ccooevrvrurierieriiirnnniiennann. 272

Xv

Figure Page
13.3 Configuration of an integrated system with local databases.................... 296

13.4 Configuration of an integrated system with local databases
and a view transformation mManager.........coeeevvveeriiereriereeiireeniniiereeeeennnnnns 298

14.1 Architecture of the SESDEcouvviiiiuiiiiiiiieiitiieniisiiesiesisnsinesesseseesnsssesssees 304

xvi

ABSTRACT

Zhang, Hong. Ph. D., Purdue University, May 1991. A Structural Engineering
Software Development Environment. Major Professors: W.F. Chen, D.W.
White.

An evolution of the traditional disciplines of structural engineering and
computational mechanics driven by the rapid advances in computer technology
is currently underway. Research and instruction in these areas are becoming
more software dependent and more software intensive. The success and pace of
this evolution depends on the rapid and economic development of domain

specific applications software.

The SESDE (A Structural Engineering Software Development
Environment) is an attempt to provide a systematic support for the
development of structural engineering software systems. SESDE is centered
around the concept of software reuse, based on object-oriented programming
technologies, and composed of reusable software components and domain-
specific CASE tools facilitating reuse. The present work focuses on the reusable
components, and attempts to build the basic SESDE framework and to establish

a model of such an environment which may be useful to other engineering areas.

The reusable components are classified in four groups: (1) a graphical user
interface development system (GUIDES); (2) an object-oriented database
management system (ODBMS); (3) a generic object class library for engineering
computing in general; (4) a structural engineering specific object class library.b
GUIDES is developed and has been used in research software development and
instruction. GUIDES has features which have not been well addressed by

existing commercial systems. A set of classes in the generic object class library

xvii

is developed. These include classes for general data structures and utilities, for
full matrices, and for sparse matrices. Techniques for engineering database
management are reviewed. It is concluded that a commercial ODBMS should be
integrated and adapted to support the features of the environment. Specific
issues associated with the integration are given. Necessary follow-up work of the
SESDE are outlined including both long-term development and short-term
application of the SESDE components. The long-term tasks are to complete the
SESDE system development, which includes the enhancement of the GUIDES,
the integration of an ODBMS, the development and enhancement of the
structural engineering specific and generic class libraries, and the development of
CASE tools. The short-term tasks are focussed on the promotion of the use of

existing reusable components.

)ﬂ‘x‘ &‘t‘\v .

CHAPTER 1 INTRODUCTION

Due to rapid advances in the power and potential uses of computers in
recent years, traditional engineering disciplines have been undergoing
tremendous changes. The rapid advances in workstation technology,
characterized by multitasking, networking, large memory and addressing, high-
resolution graphics, and interactive graphical user-interfaces, have introduced a
new style of computing for engineering research and instruction. This new style
of computing offers many advantages over the mainframe and personal

computing. Some of these advantages are:

1. User-computer interaction can be accomplished by graphical means, and
complex information can be represented with real-time two- and three-

dimensional graphics;

2. Multitasking can be accomplished without degradation of performance.
The large screen of a workstation can be occupied by one or more
windows, and several tasks can be performed simultaneously in these

windows; and

3. Collaborative work can be facilitated. A workstation is viewed not as an
isolated island but an integral part of a network. Resources such as

programs and databases may be shared over the network.

Under the influence of rapidly advancing computer technology, engineering
research and instruction are becoming more software dependent and more
software intensive. Two challenges are now facing the university computing

environment:

o The development, maintenance, and extension of advanced instructional
software that will stimulate student interest and learning in an optimum

way.

o The full utilization of advanced hardware, the timely development of new
methods and approaches in engineering computation, and the use of these

tools to provide new insights in engineering research.

The development of high-quality engineering research and instructional
software is not keeping pace with the increasing demand for such software, and
there is a widening gap between potential and actual computing capabilities.
Many existing engineering research and instructional software systems lack
extensibility and flexibility for modification. It is therefore difficult to update
these systems to take full advantage of new research and teaching developments,
and new hardware and/or software capabilities. Moreover, in spite of the
availability of improved programming tools, the development of new
applications software becomes increasingly difficult due to the added complexity
of new applications. A software crisis is apparent in engineering computing in
general, and engineering research and education in particular. Specifically, this
crisis involves the high cost of software development and maintenance due to
inadequate software design. This is especially critical in research because of the

dynamic nature of the research environment.

Problems with software development and maintenance became well
recognised in the computer science profession in the early 1960’s. The discipline
of Software Engineering emerged in the late 1960’s as a result of the attempts to
overcome these problems. Since then, many advancements have been made.
Recent progress in the software engineering area includes the development of
object-oriented programming methodologies and software development
environments with extensive Computer-Aided Software Engineering (CASE)

tools. These activities have provided great potential for increasing software

production efficiency and quality in general. Specifically, they have given rise to
an unprecedented opportunity to infuse computer technology into all areas of
research and instruction, and to give momentum to advancements in engineering

science.

However, this potential has not been fully utilized in engineering
computing. Much of engineering software still remains on older computer
technology and is being outpaced by new software and hardware advances.
Also, many of the present software development environments are general
purpose in nature. In order to achieve their full potential, these environments
need to be combined with specific application-domain tools. Research is
urgently needed in the application of advanced software development
methodologies to improve software quality and productivity in engineering.
This research intends to merge software engineering principles and

methodologies to the development of structural engineering software systems.

This chapter gives an overview of the present research. The software
related problems and difficulties (i.e.,, the software crisis) in structural
engineering computing are first highlighted in Section 1.1. In Section 1.2,
software reuse and software development environments are briefly discussed as a
potential solution to the crisis. Section 1.3 outlines an envisioned programming
environment for structural engineering software development. Sections 1.4 and
1.5 describe the reusable software components and CASE tools in the envisioned
environment. The objective and scope of the present research and the

organization of this thesis are described in Sections 1.6 and 1.7 respectively.

1.1 A Software Crisis in Structural Engineering Computing

Software systems used in structural engineering computing in the
university environment can be generally grouped in two major categories:

research systems and Computer-Aided Instructional (CAI) systems. A software

crisis in structural engineering exists that involves the high cost of development
and maintenance of these systems due to inadequate software design and

development.

1.1.1 Instructional Software

Computer-Aided Instruction (CAI) has become feasible only recently due
to the growth of workstation and advanced personal computer technology. The
capabilities provided by workstations and "high-end" personal computers such as
high-resolution color and gray-scale graphics and ergonomically designed
graphical user-interfaces, are necessary features of CAI software. The
combination of artificial intelligence techniques with these capabilities (to
develop Intelligent Computer-Aided Instructional or ICAI software) is an area of

great promise which at present is still in its infancy.

Generally, CAI and ICAI software is difficult to develop, modify, and
maintain. CAI and ICAI programs should ideally be developed in a university
environment because teaching experience is essential to achieve the desired
functionality. However, even with the advances in present software technology,
CAI software systems development based on new computer technology still
requires a long development period. Due to inadequate software development
environments and tight schedules for design, development, and testing, these
systems often are low in quality and portability, and they are hard to maintain
and modify. Often, there is not a common code base for programs in the same
area, and different programs contain a great deal of duplicate coding. Code
which accomplishes the same functions is re-developed again and again in new
programs. Also, many programs often do not have the flexibility to adapt to
evolving computer environments and computer hardware. Therefore, they can

easily become obsolete.

e

1.1.2 Research Software

University researchers should take the lead in the investigation and
demonstration of approaches which take full advantage of improved computing
capabilities. However, to demonstrate new approaches in a timely fashion,

university researchers must increase their software productivity.

At the early stage of engineering computation (1960’s and 1970’s), many
software systems were developed by using ad-hoc software development
techniques. As engineering software systems increased in size and complexity,
problems with ad-hoc approaches in software development, specifically error-
proneness and high cost, became apparent. Great efforts have been made to
improve software quality and to reduce development and maintenance costs.
Various techniques have been proposed including top-down structural
programming, database management, problem-oriented languages and virtual
machine, documentation quality standards, and use of subroutine libraries.
However, the software crisis remains. This is true particularly in the university

environment.

At the present time, many existing engineering software systems are one-
of-a-kind software. Such systems are built by components which are designed
and developed only for a specific application. The design philosophy of many
programs is to include all important tools for a particular field in a single
gsystem. For example, in a finite element system, many different types of
elements and many constitutive models may be included. However, only a few
modules in a system are actually used for solving a particular problem. Often,
these systems are large, and, if the software is not designed properly, they may
contain many complicated interlinked modules. They often may have
undocumented dependencies on hardware, operating system, graphics libraries,

etc. This makes the maintenance of these systems very difficult.

The extension of these programs to accommodate new techniques or
procedures is even more difficult. Because the modules in the system are often |
closely interlinked, bugs may be introduced in other modules when a module is
modified or added to the system. In order to modify or extend one module, one
has to understand most, if not all of the modules in the system. However, if one
wants to utilize a general purpose system in research, modification is usually

unavoidable.

Code duplication is common within and across many of these types of
systems. The same piece of code may be developed again and again among
different software components and for different software systems because of
difficulties in reusing existing software. In a university environment, it is not
uncommon that researchers might devote an inordinate amount of their time to
software development and maintenance -- time which might be otherwise spent
on more fundamental research issues if advanced software engineering
approaches and tools were available to facilitate reuse. Thus, the critical issue is
lack of software reusability due to improper design and development. Due to
the lack of software reusability, efforts spent on software development often
cannot be accumulated. This is a great waste of resources and a severe

hindrance to advancements in engineering research.

In summary, advances in computer technology provide engineers the
potential to speed up their pace and widen their range of engineering research,
and to make engineering education more interesting, challenging, and effective.
Advances in engineering science have created a demand for high-quality software
systems utilizing new hardware capabilities effectively and efficiently. However,
due to the difficulties frequently encountered in maintaining existing software
and in developing new software, the tremendous increases in computing power
offered by modern computers cannot always be fully utilized to meet the

demand. At the present time, software development and maintenance are the

~

main barriers in the infusion of advanced computer technology in engineering
research and education. A software crisis involving the excessive time associated

with software development and maintenance is thus apparent.

To overcome this crisis and to meet the increasing demands on research
and instructional software, research is urgently needed in the application of
software engineering principles and methodologies to engineering computing in
general and structural engineering in particular. An integrated, domain-specific
software development environment centered around the concept of software

reuse may help to solve this crisis.

1.2 Software Reuse and Domain-Specific Environments

A potential solution to the software crisis is to improve the reusability of
software components. Software reuse plays a crucial role in software
development because it enables the knowledge about a problem domain to be
accumulated and shared. It promises substantial improvement on several
aspects: software productivity, maintainability, portability, quality, and

standardization.

The idea of software reuse is not new. Creating subroutine libraries such
as IMSL is the classical approach for software reusability. However, as will be
discussed in Chapter 3, this approach is not sufficient to achieve a large-scale
improvement in software quality, productivity, and maintenance. It is also not
feasible to decompose existing software systems into reusable components.
Reusable components should be carefully designed. Special desigh and
implementation techniques are necessary to achieve reusability. Object-oriented
programming appears most promising for attaining reusability of software

components. This technique will be discussed further in Chapter 4.

Software development environments, generally known as Computer-Aided
Software ‘Engineering (CASE) systems, are a compatible set of tools, usually
based on a specific software development methodology. These tools can be
employed for several phases of software development and operation. There are
hundreds of such systems available in the market, and more become available
each year. Currently, most software development environments are general
purpose in that they can be applied to any application domain. However, to
make CASE systems more useful and attractive to software developers in
different application domains, it is necessary to tailor the environments to
specific application domains. That is, it is necessary to develop domain-specific

software development environments (Dunsmore, 1990).

To take full advantage of previous applications software development, a
domain-specific software development environment must support software reuse
in the targeted domain. It should consist of a large collection of reusable
software components and tools supporting software reuse for the targeted
domain. Some knowledge of techniques and practices in the domain of interest
has to be embedded in the environment’s tools. These features distinguish
domain-specific environments from general-purpose environments. Research on
domain-specific software development environments is of great interest to both

computer scientists and software developers in different application domains.

A domain-specific software development environment for structural
engineering computing is the goal of the present research. This environment is
pnamed the SESDE, which is an acronym for Structural Engineering Software
Development Environment. It is hoped the envisioned environment will make a
significant impact on the software quality and productivity in software
development for structural engineering research and instruction. The envisioned
environment provides general tools that are directly applicable to other areas,
and its specific tools should indicate directions for development of domain-

specific tools in other areas.

The development of the SESDE is justified due to several important

practical reasons as described below.

Research is needed to apply software engineering principles and
technologies to specific engineering domains and to build domain-specific
software development environments. The present work on SESDE
demonstrates a possible engineering domain-specific software development
environment and its potential in improving software productivity and
quality. It provides directions to alleviate many of the current software

problems in engineering and scientific research and instruction.

The increasing demands on research and instructional software require the
development of the SESDE. Although some software development tools
are starting to become available in the software market (e.g., standardized
graphical user-interface tools, database management systems, and
Computer-Aided Software Engineering (CASE) tools), the software tools
necessary for the structural engineering software development are
currently either inadequate, not portable, or unavailable. The integrated
software development environment envisioned will not be commercially

available in the foreseeable future.

The domain-specific nature requires the development. Reusable software
components for structural engineering computing constitute probably the
most important part of the environment. These components will be used
as basic building blocks for research and CAI software systems. Such a
library of reusable software components has not been seen on the
commercial market, and it must be developed by structural engineering

researchers, staff, and students themselves.

10

1.3 A Structural Engineering Software Development Environment

1.3.1 Motivation

Meyer stated (1988), "Reusability, as a dream, is not new.” The author
also has had this dream for a long time. The present research is an attempt to

make the dream a reality.

To provide systematic support to software development, reusable software
components for structural engineering computing have to be identified, designed,
implemented, and maintained. A software development environment is
necessary which consists of these components and the necessary programming
tools, and which provides systematic support for structural engineering software
development. These considerations have motivated the development of the
domain-specific Structural Engineering Software Development Environment

(SESDE).

The envisioned SESDE consists of reusable software components and
CASE tools which support software reuse. In the SESDE, the software
components will include both structural engineering specific and general-purpose
components whose use is not limited to structural engineering. The CASE tools
of the SESDE are utilized for managing the software components and helping

programmers to find and integrate components into applications.

1.3.2 Development Methodology

Object-Oriented Programming (OOP) is the key methodology employed to
achieve the goal of the SESDE. This is because software reusability is the
central objective of OOP. This programming methodology facilitates a new
style of software development based on large number of prefabricated software
components. This new style of software development should be more productive
than previous styles. Software developed in this way should be less error-prone,

more abstract, more readily modified, and more extendible.

11

1.3.3 Design Philosophy

Where possible, the environment should be built from currently available
software components and CASE tools. New software is to be developed where
current software is inadequate, incompatible, or unavailable. The research on
this environment focuses on the integration of tools that support the
development of application-specific programs for both research and instructional

activities.

As mentioned previously, object-oriented programming is the major
methodology for the software components developed in the environment. The
C++ language has been chosen as the major implementation language.
However, the environment does not force applications to follow the object-
oriented methodology or to use the C++ language. Where possible, interfaces
for conventional languages such as C and FORTRAN are provided for software

components of the environment.

1.3.4 Features

It is important to emphasize that the SESDE itself does not involve the
development of general purpose systems for structural analysis, design, etc.
Rather, it is an integrated environment for systematic support and development
of specific and/or general purpose application programs for both research and
instructional activities. The envisioned Structural Engineering Software

Development Environment has the following three important features:

1. The environment facilitates the integration of software components. In
this regard, the compatibility among individual components and different

CASE tools is the key issue.

2. The environment is an open environment. Investigators working in related

areas at the same site or at remote sites may extend the environment by

1.3.5

12

adding components and/or CASE tools to the environment.

The environment is domain-specific for structural engineering. However,
many of its components and CASE tools are directly applicable to other

engineering domains.

Benefits

The following benefits are expected from the SESDE:

New substantial applications may be built more efficiently based on reuse
of software components accumulated from previous software development.
Rapid prototyping of new algorithms and new approaches needed for

effective research can be more easily accomplished.

The effects of hardware, operating system, and graphics library evolution
may be resolved within the SESDE system without affecting the

applications.

The sharing of software and collaborative work among developers in the

same or remote sites can be greatly facilitated.

New computer technologies such as computer graphics, advanced user-
interfaces, and databases management can be made more readily available

to researchers.

1.4 Components of the SESDE

1.4.1

Classification

The components of the SESDE are developed as object classes. According

to an object-oriented methodology, the envisioned environment is composed of

the following groups of object classes:

e
\

13

1. Object Sub-Systems: Several levels of classes can be related by an
inheritance mechanism and grouped together to form a sub-system which
implements a high-level abstraction of a particular engineering software

tool. The envisioned SESDE includes the following three sub-systems:
¢ A Graphical User-Interface Development System;
e A Database Management System;
o An Artificial Intelligence System;

2. Generic Object Classes for Engineering Computing: Object classes in this
group include the representation of basic mathematical entities such as
matrices, vectors, tensors, and functions (the mathematical meaning rather
than the programming meaning). Other classes in this group are those
used for basic data structure representations and general utilities in
engineering software. Examples of these include text strings, extendible

arrays, and an exception-handling utility ete.

3. Specific Object Classes for Structural Engineering Computing: Specific
sets of object classes are needed to facilitate applications software
development in the structural engineering domain. Typical examples are

object classes for finite element analysis.

These classes are described in the following sections.

1.4.2 A Graphical User-Interface Development System

Interactive graphical user interfaces are an essential part of modern
engineering software. However, the code which handles the graphical user-
interface is often complex and difficult to debug and modify. It accounts for a
significant portion of the code of interactive graphics applications. Therefore,

the design and implementation of the user interface of a program is a very

(

14

important but difficult task. To ease the development of and to allow rapid
generation and modification of graphical user interfaces, and to provide a crucial
layer between applications software and the various evolving user-interface
environments, a Graphical User-Interface Development Sub-System is necessary.
This system, called GUIDES, is a software tool consisting of reusable software
components for creating and handling the graphical wuser-interface of
applications. The design of GUIDES (Zhang, et al. 1990) has evolved from a
study of currently available user-interface tools such as the Macintosh Toolbox
(Mednieks, et al. 1986), MacApp (Schmucker, 1987), HyperTalk (Shell, 1988),
and the X11 toolkits (McCormack, et al. 1988).

The GUIDES system provides programmers with a reasonably complete set
of user-interface tools such as menus and dialogue boxes. GUIDES has facilities
similar to the emerging GUI standards such as OSF/Motif (Open Software
Foundation, 1990), and it is fully integrated with a modern object-oriented,
three-dimensional graphics library, HOOPS (Wiegand, 1988). The key feature
of any graphical user-interface development system is the achievement of a
better separation between the user-interface and other components of an
application (Dodani, et al. 1989). GUIDES provides an Interface Desecription
Language to achieve this feature. Applications can use this language to specify

their user-interface independently of the application-specific code.

With such a system, researchers can concentrate their efforts on the
functionality of the program at hand without getting bogged down in the details
of implementing the user-interface. The complexity of the design and
implementation of the graphical user-interface is significantly reduced. The
code for creating and handling the user-interface is completely separated from
the computational components of applications. Application-specific and user-
interface components can be independently designed, developed, tested, and
modified. A detailed description of GUIDES is given in PART TWO.

15

1.4.3 A Database Management System

Engineering analysis and design software systems usually need to handle a
large amount of data. A typical program needs to obtain input data either
interactively or from databases in the file system. It must also check the legality
of the input data to ensure the correctness of the computations. The code that
handles the data input is the most cumbersome and error-prone part in many
programs. Furthermore, in most modern applications, the input process is
substantially compressed by the use of sophisticated user-interfaces and
computer graphics. The resulting data is then greatly expanded prior to
performing the engineering tasks. The input data and the large amount of data
created during execution of a program must be passed to and received from
different code units to perform the desired operations. A program also needs to
store the computational results for further processing. Often, several databases
are shared by a number of systems. Thus, the enforcement of data consistency
between different systems becomes an important issue in software development.

In many cases, data handling is where the inflexibility and inextensibility occur.

A database management system responsible for the data transfer from the
user to the program, between code units in the program, and between different
programs, is thus necessary. The database management system envisioned for
the SESDE is vital to the development of standardized reusable components and
to the integration of reusable components into applications. With this system,
application programmers will be substantially relieved from the handling of data
input, data transfer between primary and secondary memory, and enforcement

of data consistency between applications and application components.

During the period of the present research, a new technology, Object-
Oriented Database Management Systems (ODBMS), is emerging and appearing
on the commercial market. This new technology offers many advantages over
the older database technologies. The development of an ODBMS involves an

intensive software development effort. Thus, it is not feasible to develop an

.

16

ODBMS component for the SESDE. Rather, a commercially available ODBMS
should be integrated into the SESDE. This aspect is similar to the integration
of HOOPS into the SESDE for handling the basic graphics functionality.
Enhancements to a DBMS will generally be required that are similar to the
development of the GUIDES software which enhances the HOOPS in the aspects
of handling graphical user interfaces. The discussion of the issues involved with

integration of an ODBMS into the SESDE is given in Chapter 13.

1.4.4 An Artificial Intelligence System

Artificial intelligence based tools are being used increasingly in domain-
specific engineering applications. The tools are particularly attractive for
tackling ill-structured and ill-posed problems. There is a whole range of
engineering problems, ranging from analysis to design and optimization, that do
not gracefully lend themselves to rigid algorithmic solutions. When integrated
with graphical user interface and database management systems, an
environment utilizing current developments in artificial intelligence techniques

would provide a powerful research tool.

For example, the complexity of the problems typically addressed and the
substantial amount of data and knowledge generated by research can provide a
useful testbed for neural network applications. Furthermore, a knowledge based
expert system could be used to query, maintain, update, and scrutinize the
validity and reliability of engineering data and knowledge bases. A knowledge
based system can also be used to aid in quickly familiarizing a user with the
details of a particular application program or of a software component. This
will expedite the integration of new software with existing codes. ‘Moreover, a
knowledge based system can be used to control and monitor the processes of
analysis, design, redesign, and optimization, as well as help interpret results and

suggest possible avenues for further action.

17

Artificial intelligence tools can be used in tandem with research
applications to build powerful and attractive ICAI (Intelligent Computer Aided
Instruction) courseware. Tkis courseware, formulated with the help of
experienced faculty, will give students greater control and flexibility in the

learning process.

In the SESDE, the artificial-intelligence system will be based in part on a
suitable domain-independent expert system shell providing an adequate
inference and knowledge acquisition mechanism. However, the development of

this system is not included in the present research.

1.4.5 Object Classes for Engineering Computing

There are a number of basic mathematical entities which are commonly
manipulated in engineering software. Such entities include matrices, vectors,
tensors, single variable functions, (i.e., y =f(x)), and functions of multiple
variables (i.e., y = f(x;, X3,, X3)). Manipulations on these basic entities often
constitute the fundamental part of an engineering program. In traditional
programming languages, these entities often are represented implicitly by
variables of different built-in data types. For example, a full matrix often is
represented by an array and its dimension variables, and a sparse matrix is
represented by a one-dimensional array which stores the elements of the matrix,
an index array, and several integer variables such as the array’s dimension,

band-width, ete.

By using object-oriented paradigms and object-oriented languages, these
entities can be explicitly represented and manipulated by corresponding object
classes in software. Each entity will be an object of a particular class and can
be manipulated in a way similar to its corresponding mathematical expressions.
Thus, based on these classes, operations on these mathematical entities will be

coded more abstractly and expressively, and they will be less error-prone.

ey

18

There are also some basic data structures and general utilities which are
commonly used in engineering software. The extensible array is a typical
example among the basic data structures. The array type is a built-in data
structure provided in all general-purpose languages. The size of an array can
not be changed once the array is created. This causes problems when the exact
number of elements required is not known at the time of array creation. The
extensible array is a data structure used to create arrays for any specific element
type. The size of an extensible array may be automatically extended whenever
it is necessary. At the same time, the elements of the array can still be accessed
by using an index which is the same as the built-in array data structure. An
exception-handling utility is a typical example of general utilities. When an
exception occurs in an application, this utility may report the error, invoke
application-specific error-handlers, and send a signal to the operating system to

abort the execution of the application if necessary.

Reusable software components which implement these basic data
structures and general utilities are necessary for efficient development of quality
engineering applications. It is very difficult to develop such components and
make them easy to use with traditional programming languages. Object-
oriented methodologies and languages make the development possible and

feasible.

A set of general object classes for engineering computing has been
developed in the present research (Zhang, et al. 1990) as a part of the envisioned
environment. These classes are described in PART THREE.

1.4.8 Object Classes for Structural Engineering Computing

The components described in the previous sections are general-purpose in
that they can be used readily in the development of any engineering software. A

group of reusable components specifically for structural engineering computing is

19

an essential part of the envisioned environment.

Many different components may be utilized in any particular set of
structural engineering applications. Among these are many common or similar
software components. Object-oriented programming provides the means to

utilize both commonality and similarity.

One example of this is a family of classes which implements different
element types in a finite element analysis. A generic element class may be
developed which can be used as the base class for any specific element type. A
class for a specific element type would inherit the properties and methods
defined in the generic class. Only the properties and methods which are specific
to a particular element type would then need to be implemented for a specific

element class.

Other families of classes for finite element analysis would include those for
various types of constitutive models, integration algorithms, and global analysis
strategies. Standard interfaces can be made for the classes in each family such
that a programmer can easily integrate them into an application without

knowing their implementation details.

These types of classes will form a structural engineering specific object
class library to facilitate structural engineering software development. This
library and the general-purpose reusable components described in previous
sections can be utilized in the development of specific structural engineering
applications. Any new component developed for a specific application can also
be stored in the structural engineering specific class library for future reuse. As
a result, this library will grow progressively as new applications are

implemented. However, this development is not included in the present work.

20

1.5 Domain-Specific CASE Tools

Software components form the foundation of software reuse in the
development of applications. However, if software reuse is to become a reality,
CASE tools are needed to manage the software components and to assist
programmers with: (1) finding and selecting reusable components, and (2)
integrating reusable components and software tools with application-specific
components to build an application. Several CASE tools are envisioned here,
but the specific development or integration of these tools within the SESDE is

not included in the present work.

Three of these envisioned CASE tools are described in the following sub-
sections. The first two CASE tools are general purpose, that is, they can be
used for software development in any specific engineering domain. The last one
is structural engineering specific since knowledge of programming techniques
and types of applications in the structural engineering domain is embedded in
the tool. However, the framework of the tools is still general and may be

adopted by other engineering areas.

1.5.1 A Tool for Graphical User-Interfaces

As described previously, applications can represent their graphical user-
interface through the GUIDES description language. A construction tool for
graphical user-interfaces may be included in the envisioned environment. This
tool will allow programmers to graphically define the entire interface of an
application and then automatically generate the user-interface specification. It
will provide a necessary facility for rapid prototyping and incremental

development of application user-interfaces.

rd

21

1.5.2 A Tool for Reusable Component Libraries

The software libraries described previously will form databases of reusable
software components. Not only should these databases contain the code
corresponding to each of the software components, but also they should
maintain information about each component such as a component’s specification
and the dependency between a component and other components. A CASE tool
is necessary for proper management of these libraries. This tool will help
authorized personnel manipulate and maintain the libraries. It will also provide
an interactive interface for programmers to retrieve information, such as a
catalogue of components or the specification of an individual component from
the libraries. Furthermore, this CASE tool will also be used to search for

components with specific attributes.

1.5.3 A Tool for Application Development

Application development processes can be automated by use of a large
collection of reusable software components in a specific domain. The computer
should become an active and efficient assistant for the building of applications.
A computer-aided application development tool may be developed to facilitate

automated software development for structural engineering.

A programmer will input the requirements of an application to this
system. According to the requirements, the system will check if reusable
components in the library are sufficient to construct the application. If they are,
these reusable components will then be integrated by the system to form the
application. If they are not, the system may inform the programmer of which
components need to be developed for the application. With the help of such a
tool, applications can be developed in a more efficient manner. With this type
of tool, the traditional general-purpose analysis program containing many

software components may not be necessary because a program containing only

R
P

22

the necessary components for a specific analysis can be generated directly. A
program generated in such a way will be much smaller and more efficient than a

general-purpose program.

1.6 Objective and Scope

The critical issue addressed by the present work is that efforts made on
development and extension of software for engineering computing often cannot
be accumulated. Rather, they become wasted. A potential solution is to
improve the reusability of software components. The objective of the work is
the design and development of a software development environment that
promotes software reuse in the specific structural engineering domain. This
environment should provide a systematic support to the development of
applications software, as well as serve as a crucial layer between structural

engineering applications and the evolving computer technology.

The present work attempts to build the basic framework of the SESDE,
and to establish a model of such an environment for other engineering areas.
Herein, the architecture and major components of this environment are
identified. Requirements are established for many of the components. Several
of the components are designed and implemented. The necessary technologies

for the design, development or integration of other components are outlined.

Software engineering methodologies for engineering software development
in general, and object-oriented programming approaches in particular are
reviewed. Basic functionalities of the graphical user-interface development
system are designed and i.mplemented. The application of general database
management technology to engineering software is evaluated, and the issues
involved in integrating a commercial object-oriented database management
system with the SESDE are investigated. A set of general object classes for

engineering computing are designed and developed.

"
N

23

1.7 Organization of the Thesis

This thesis is composed of three parts and three separate chapters. This

chapter is an overview of the present research.

PART ONE gives an overview of software engineering principles and
technologies that will be applied in the development of the SESDE. There are
four chapters in the first part. In Chapter 2, software engineering technologies
are briefly reviewed. Chapter 3 discusses software reusability issues. A
summary on the object-oriented programming paradigm and the use of this
paradigm in the C and C++ languages are presented in Chapter 4. Lastly,
Chapter 5 discusses the topics on how to apply software engineering principles

and technologies in the SESDE development.

PART TWO deals with the Graphical User-Interface Development System
of the SESDE (GUIDES). The current technology of the development of user-
interface tools is discussed first in Chapter 6. Chapter 7 gives an overview of
the development of GUIDES. A detailed description of the GUIDES is given in
Chapter 8.

PART THREE describes object classes for engineering computing in
general. The current state-of-the-art in engineering software development is
first reviewed in Chapter 9. General object classes currently in the SESDE
object library are then described in Chapters 10, 11, and 12.

Chapter 13 addresses the requirements for a Database Management
System of the SESDE. Current database management technologies are
reviewed. The issues of applying these technologies for engineering data
management and the integration of a commercial object-oriented database

management system with the SESDE are discussed.

Chapter 14 provides the concluding remarks. Relevant references are

listed at the end of each corresponding part.

PART ONE

OVERVIEW OF SOFTWARE ENGINEERING TECHNOLOGIES

24

25

CHAPTER 2 BACKGROUND AND CURRENT ISSUES

The discipline of software engineering was born in the late 1960s to
overcome the so-called "software crisis” (Bishop, 1986). This crisis resulted
directly from the introduction of a new generation of computer hardware.
These computers were orders of magnitude more powerful than the older
generation, and their power made hitherto unrealizable applications become
feasible. The implementation of these applications required building large
software systems. However, existing techniques which were applicable to small
systems could not just be scaled up, and were inadequate for building large

systems.

A number of major projects were late, unreliable, difficult to maintain,
cost much more than predicted, and performed poorly. Software development
was then in a crisis situation. Hardware costs were down while software costs
were rising rapidly. Thus, there was an urgent need for new techniques and
methodologies which allowed the complexity and costs of large software systems
to be controlled, and the people involved in software development to be
managed and motivated (Sommerville, 1985). The field of software engineering

was born to meet these demands.

The term Software Engineering is defined as "The profession of applying
scientific principles to the design, construction, and maintenance of computer
software systems" (Sommerville, 1984). This definition emphasizes that
software engineering addresses all stages of the life-cycle of a piece of software:
specification, design, implementation, validation, operation, maintenance,

extension, and reuse. At present, software engineering principles are well

ey

26

established with regard to central issues such as program structure, program
design technique, user-interface design, program documentation, software reuse,
and software development environments. These principles have been

successfully applied in the computer science profession.

This chapter presents a brief overview of software engineering
technologies. In Section 2.1, the classical software life-cycle model is described.
Section 2.2 discusses important characteristics of a well-engineered software.
Lastly, in Section 2.3, some issues in current software engineering research are

highlighted.

2.1 The Software Life Cycle

In the development and use of a software system, a number of distinct and
interacting phases can be identified. The term software life cycle is used to
describe these phases of a software system. In the traditional software
engineering approach, the life cycle of a software system is broken into five
major phases: specification, design, implementation, testing, and operation and

maintenance.

1. Speciﬁcation:. The first stage in producing a software system is to generate a
requirements specification which defines the functions to be performed by the
system and the constraints on the system. The resulting software specification is
not concerned with the internal operation of the system but rather with its

external characteristics.

2. Design: A software design is a machine independent statement of how
individual program units must interact to implement the software specification.
The quality of the design of a piece of software affects not only the
implementation of the design but also the life cycle costs of the resulting

product. A well designed program will not only be more reliable and require less

27

maintenance than a program developed in an ad hoc manner, but also it can be
more easily modified as the product requirement changes during its lifetime. A
traditional design methodology used in the development of software systems is
top down structural programming. In this methodology, the design is developed
in a series of stages with each successive stage being a more refined version of

the last until, finally, the complete system design is produced.

3. Implementation: The software design is realized in this phase by code written
in a computer programming language which can be executed by the target
computer destined to run the software system. The implementation of a
software system must involve two important considerations: the programming
language and the programming environment to be employed. The programming
language, which is the medium through which programmers build the system,
affects the ease of development and maintenance of the system. The
environment in which a software system is developed is of crucial importance to
the success of a project since it has a great impact upon programmer efficiency,
documentation quality, project management and product quality (Depledge,

1084).

4. Validation: This phase involves the validation that the implemented software
meets the requirements of the user. To increase overall confidence in the
software, it is necessary to perform tests to identify and correct errors
introduced in the system during the implementation phase. Moreover, during
this phase, it is common to detect errors and misunderstandings in the

functionality of the system introduced in the preceding phases.

5. Operation and Maintenance: After the software is in use, it may be necessary
to correct errors detected or to modify the software to meet changes in user
requirements. This phase is also called "software evolution”. Overly complex
program structures are generally the result of evolutionary development rather

than a single creative act. This is especially true for large software systems.

28

It should be noted that the software life cycle is a cyclic rather than a
sequential process where each phase interacts with preceding and succeeding
phases. Usually, work done in an early phase of the cycle must be redone as
problems arise in later phases. Costs of software development are not equally
distributed in these phases. It is estimated (Sommerville, 1984) that the first
three phases, specification, design, and implementation, each accounts for about
20% of the total initial costs with the remainder taken up by validation.
Typically, the maintenance cost is much higher -- about five times the

development costs.

2.2 Characteristics of Well-Engineered Software

According to the cost distribution over the life cycle, a well-engineered
software should exhibit three basic and dominant characteristics (Sommerville,

1984):

1. It should provide the functionality and operate within the constraints

defined in the software specification.
2. It should be reliable.
3. It should be readily modifiable and extendible.

The first is a very general characteristic which includes many external
features that may be defined in the software specification, such as space and
time efficiency, and ease of learning and use. The second is the most important
dynamic characteristic of a software system as software becomes more diverse

and is used in more and more application areas.

The third characteristic arises directly from the consideration of the
maintenance costs. The software development activity should be aimed toward

producing a readily maintainable and readily extendible software system. This

29

means that the software system must be constructed so that modification and
extension can be accomplished in a time proportional to the magnitude of the
changes rather than to the size of the system. This characteristic is critically
important for software systems to survive in an evolving environment. Thus, it
should be a primary goal in software development. This characteristic leads to
several important issues of software engineering including program structure,
design techniques and reuse of program components, program readability, and

program documentation.

Maintainable systems should have a modular structure both in the small,
to allow modification on the functionality of a specific component, and in the
large to allow changes in major components as the application domain as well as
the computer technology evolves. Different design methodologies may lead to
different definitions of modules. However, the modules in a software system
should be independent of other modules to a certain extent (i.e., they should be
loosely connected). Moreover, the interface between modules should be clearly
defined such that the modules in a system can be indepeﬁdently developed and
tested, unconnected or replaced without side effect, and kept in libraries for re-
use. The readability of programs should take place over writeability because
programs are read more often than they are written. Documentation should be
clear, concise, and complete, and should be treated as a part of the software

system of equal importance to the actual source code.

2.3 Current Issues

It is likely that the average size and complexity of future engineering
software will grow considerably in the coming years because of: (1) increased
demand for sophisticated user interfaces and graphics processing; and (2) rapid
development of hardware which makes it possible to develop programs for

problems which were previously considered infeasible. Thus, the improvement

g
'

30

of software quality and productivity is becoming increasingly important. This is
an issue in software engineering research that has attracted increasing attention
during recent years (Wegner, 1984; Barbacci et al., 1985; Prieto-Diaz et al.,
1987; Meyer, 1987, 1988; Tracz, 1987; Burton et al., 1987, Pyster et al., 1988;
Ellison, 1988).

At present, software development is still largely labor-intensive --
programmers perform the major activities in the process. Only by becoming
more technology-intensive can software quality and productivity be improved on
a large scale. In technology-intensive software development, the computers
become more important actors. Automation in software development can be
accomplished by using: (1) reusable software components and software tools that
individually address a single area or function; and (2) development environments
that consist of large collections of reusable components and software tools as

well as associated programming tools which facilitate software reuse.

The objective of software reusability is to enhance the software
development process by enabling effective reuse of software components, designs,
templates, or specifications to substantially increase the fraction of a new system
that can be derived from prior work. Among different types of software reuse,
the reuse of software components has the most direct and tangible benefit.
Software component reuse requires a software design methodology which
promotes reusability. This has made object-oriented programming a popular

choice in recent years.

Reusability also requires a rich software development environment in
which software reuse is systematically supported and is a natural activity. An
ideal integrated environment should be composed of: (1) a consistent and
compatible set of components and software tools, and (2) integrated
programming tools for all phases of system development and operation. The

consistency of reusable components must be emphasized. The quantity and

31

merits of available individual reusable components in an environment are less
important than the consistency of these components. Consistency means not
only the ability to commmunicate with each other, but also the ability to share a
common set of calling conventions, user-interfaces, and general design
philosophy (Barbacci et al., 1985). These issues will be discussed further in the

following chapters.

32

CHAPTER 3 SOFTWARE REUSABILITY

Because of the potential benefits of large scale software reuse in software
development and maintenance, software reusability has attracted increasing
attention over the past years and is one of the major interests in software
engineering research and practice (Wegner, 1984; Barbacci, et al., 1985; Prieto-
Diaz et al., 1987; Meyer, 1987, 1988; Tracz, 1987; Bassett, 1987; Kaiser et al.,
1987; Burton et al., 1987; Lenz et al., 1987; Fischer, 1987; Love, 1988; Pyster et
al., 1988; Cox, 1988). This chapter presents a brief overview of the issues

related to software reuse.

3.1 The Concept of Reuse

Wegner (1984) has made an interesting comparison between software
technology and the technology that fueled the industrial revolution. He points
out that software technology was labor-intensive in its youth and is becoming
capital-intensive as it matures. Capital-intensive development can be referred to
also as being technology-intensive. An important feature of technology-intensive

software development is software reuse.

In fact, reusability is a general engineering principle whose importance
derives from the desire to avoid duplication and to capture commonality among
inherently similar tasks. Designing software without reusing existing tools
and/or software components is similar to designing a building without using

prefabricated structural components and standard member section siges.

-

33

Reuse may be defined as the utilization of previously acquired concepts
and objects in a new situation. It is a matching process between new and old
situations and may take place at different stages of software development. A
model of a real world object may be reused in different software systems again
and again. The specification or design of a finite element analysis program may
be reused for the development of another finite element program that has
similar functionality with the previous one. The code of a software component
in a program may be reused in another program without or with only minor
changes. However, only the reuse of software components has the most tangible

and direct benefits.
Software components can be reused by
1. being included in a variety of applications,
2. being utilized in successive versions of a given program, or
3. being called repeatedly during program execution.

All of these three forms of reusability reduce the efforts of software
development. The first two forms motivate the development of reusable
software components as basic building blocks for various applications. The
third form motivates the development of generic software tools, such as tools for

handling the graphical user-interface.

It is a mistake to assume that software component reuse does not pose any
new design challenges (Fischer, 1987). Rarely is it feasible to decompose an
existing software system into reusable components that can be employed readily
for constructing other systems. Software components must be specially designed
for reusability to achieve optimum reuse. The need for reuse has caused an
evolution of the software life-cycle model and program design process. A
software environment that supports reuse is essential to allow programmers to

take advantage of previous work. These issues are discussed in the forthcoming.

SR,

34

3.2 Characteristics of Reusable Components

Reusable software components, or reusable modules, are basic units for
building applications. A reusable component should consist of two separate
parts: the specification and the implementation. The specification should consist
of three major parts: (1) an overview of the component, (2) the definition of the
component’s interface with its clients (or other software components that it can
communicate with), and (3) test cases for the component. The implementation

of a component includes the detailed design and code implementation.

According to the information hiding principle of software engineering, the
details of a component’s implementation should be hidden from the outside
world. Any changes in the implementation should not affect its specification.
Users of a component should only need to access the component’s specification

without referring to its implementation.

The definition of the interface in the specification describes the available
operations by and only by which clients communicate with the component.
Both the syntactic interface and the semantic interface have to be defined. The
syntactic interface specifies compile-time invariants that determine how
components fit together, while the semantic interface specifies execution-time

invariants which determine what data the component operates on.

The interface should be unified among the components of the same type
(e.g., components that implement different strategies for solution of linear
simultaneous equations, or components which implement different material
models in a nonlinear finite element analysis). Only by a unified interface can a
reusable component be replaced or added to a program without affecting other

components.

The simplest possible notion of software reuse is the "use-as-is” notion
(Bassett, 1987). Program development may benefit from fixed, use-as-is

components. However, it is more often the case that a software component is

35

needed which is similar to an existing component (Meyer, 1987). Therefore, the
“"same-as-except” notion ("A" is the same as "B" except ...) is a needed

generalization of the "“use-as-is" notion (Bassett, 1987).

In this regard, extendibility, which is defined as the ease with which a
software component can be modified to reflect changes in its specification,
should be another important characteristic of reusable components. The UNIX
operating system provides a good example of software extendibility. Existing
programs in UNIX are treated as independent software components. If one of
these software components does not meet a specific need, it may not be
necessary to change the component itself. Either the pipe facility may be used
to link the component with another component, or specific program code may be
developed and placed around the component to provide the needed

functionality.

3.3 Design of Reusable Components

Reusable software components for a certain problem domain can be
identified and defined by a domain analysis. Abstraction techniques are the
most powerful tool to perform this analysis. Abstraction arises from a
recognition of similarities between certain objects, situations, or processes in the
real world and the decision to concentrate on these similarities and to ignore, for
the time being, their differences (Wegner, 1984). Many different abstraction
mechanisms have been proposed as a basis to identify and define software
components. Each may represent different types of components from which
programs can be constructed, and each may result in different paradigms or
methodologies for programming. Two important abstraction techniques are

functional abstraction and data abstraction.

Functional and data abstraction emphasize different aspects of software

reusability. Functional abstraction emphasizes reusability of functions, and

s

36

functions or subroutines are the basic reusable units. Data abstraction
emphasizes reusability of types of data objects for various operations that may
be applied to them. Data types or classes of data objects are the basic reusable
components. Functional abstraction leads to top-down structured programming.
Data abstraction, incorporated with the information hiding principle, leads to

object-oriented programming.

3.3.1 Functional Abstraction

Functional abstraction may be specified in terms of input-output relations
of a component. Every input z determines a unique output f(z). The output
depends only on the input z and on no other data. A client of the component is
aware only of the input-output specification and not of the way the function is
implemented. The specification represents the interface with the client, and the
implementation is hidden from the client. In this approach, reusable

components are subroutines.

Building subroutine libraries is a classical technique. Subroutine libraries
have significant affected the production of mathematical software systems as
well as software for string manipulation and I/O. Each routine in a library
implements a well-defined operation. However, library subroutines are not
sufficient to achieve a large-scale improvement in software productivity and
maintenance. An individual subroutine is too small and the effort necessary to
make many subroutines work together is too large. Small size subroutines are
more amenable to reuse than large units, since they tend to be relatively simple
and context-free, but only a small amount of code is then actually reused by

each subroutine call (Kaiser et al., 1987).

Moreover, in dealing with a complicated problem with many different
special cases, either a single routine for all special cases or a set of routines, each

corresponding to a special case, may be developed. A single routine will need

e

37

many parameters, and will probably be constructed using a set of case
instructions leading to a complex and inefficient implementation. The addition
of a new case will mean modification and recompilation of the entire module.
This may introduce new bugs into the system. A set of routines will be large,
and it will consist of many routines that in fact are very similar. The key
problem is that there is no simple way by this approach to utilize this similarity
between these routines. Client programmers have to find their way through a
maze of routines (Meyer, 1987). Also, subroutines are written with all the
details filled in. Therefore, it is not possible to extend the algorithm
encapsulated in the subroutine without a proliferation of different versions of the
code (Kaiser et al., 1987). This results in difficulties in extending an existing

component.

3.3.2 Data Abstraction

In data abstraction, the information which should be hidden from the user
includes the data as well as implementation of the functions that operate on the
data. Data abstractions have an internal state that "remembers" the effect of
past operations and allows components to use this state to direct future
operations. Thus, the output f(z, s) from an operation of a data abstraction
depends not only the input z, but also the hidden state variable 5. A data type
or an object class is an implementation of a data abstraction. A data type
defines a common data structure which is shared by data objects of that type,
and supports operations that operate on the data objects. This approach leads
to object-oriented programming. The reusable components are data types or

object classes.

The term "object” is used to denote software components that have a
hidden state and a set of operations for transforming the state. Objects package

together both the functions (called the methods of the object) and the particular

A "‘«.{

38

type of data that the functions are designed to work with (called the properties
of the object). Objects of a same class share common type of properties and
have common methods. The definition of the particular data type and the
implementation of the methods of a class are encapsulated (i.e., hidden) in the
class body. The methods, which are the only means for manipulating an object

of that class from the outside world, are declared in the specification of the class.

Object-oriented programming has two distinguishing features which

encourage software reuse:

1. The user of an object class is more clearly separated from the developer.
Users are not aware of how an object is stored or how an operation on the
object is implemented. They can only manipulate an object using the
methods provided by the developer. This ensures that the implementation
of the encapsulated object can be changed without affecting its

application.

2. In an object-oriented system, a set of object classes can be organized
hierarchically by the base-derived relationships between object classes and

the inheritance mechanism between a base class with its derived classes.

A derived class is a specialization or an extension of its base class. The
derived class may possess the properties defined in its base class as well as
additional properties special to itself. Objects of a derived class may be
manipulated by the methods defined in the base class as well as those defined in
the derived class. This inheritance mechanism mirrors the growth of human
knowledge by building on what already exists rather than by starting from the
beginning for every software component. Thus, an object class that is almost
like an existing one can be created by simply specifying additional properties
and methods and reusing properties and methods that the new class shares with
the existing base class, Extendibility of software components is thus facilitated.

Object-oriented techniques are discussed in more detail in the next chapter.

b,

39

3.4 Software Reuse and Life Cycle Models

Software reuse also plays a central role in the evolution of the software
development life-cycle model. The classical waterfall model has been described
in Chapter 2. This model was developed in late 1960’s. In this model, the
software development proceeds through a number of stages: specification, design,
implementation, validation, and operation and maintenance. However, in spite
of its success, the waterfall model has some drawbacks (Wegner, 1984). First, it
is geared to program development by humans rather than by the computer.
This reflects the fact that the potential of the computer as an active partner in
program development was not fully understood when the model was established.
Another important drawback is that the waterfall model does not provide
feedback concerning specification and design behavior until late in the

implementation and validation phases.

The concept of software reuse has motivated a new software development
life-cycle model called the operation model (Wegner, 1984; Thomas, 1989).
Rapid prototyping that reuses existing software components is central to this
new approach. The stages in an operational software development life-cycle are:
executable specification (rapid prototype), refinement, and efficient
implementation. In such a development, a display prototype is first developed
to perform initial user-interface testing. This is followed by the development of
a full simulation that is an executable specification of the final product. The
executable specification provides early feedback to both the end-user and the
system designer on the functionality of the intended system. The specification is
then refined and optimized to build the final product. It is obvious that in this
approach, the existence of a large amount of reusable software components is

essential for building the prototype as well as the full simulation.

One other software development life-cycle model is the knowledge-based
model. This model depends also on the existence of a large amount of reusable

software components in a certain problem domain. Knowledge of the general

S .

40

programming process as well as the programming process in a specific problem
domain is needed to implement this model. This model is based on the
operation model, and has the potential of increasing software productivity by
several orders of magnitude (Wegner, 1884). It is a specialization of the artificial
intelligence technology applied to the domain of program development. This
model addresses the automation of software development, and the computer

becomes an active partner in the development.

3.5 Reuse of Components

The object-oriented design process, which is based on utilization of
reusable software components, is different from the traditional process of top-
down design and step-wise refinement. An object-oriented design begins with
the identification and classification of the objects that the application must
manipulate. The objects or classes of objects identified are then compared with
the existing objects or classes which have been coded in the existing reusable

software components to see if the same or similar objects or classes exist.

Existing objects or classes of objects can be used as is, or they can be
extended using the inheritance mechanism. Extension requires development of
new software components based on existing ones. Objects or classes which can
not be found in existing objects are created as new objects or new classes, and
the corresponding software components must be developed. The newly created
objects or classes can be kept for future reuse. These objects or classes are then

combined to form the final system.

This process is not top-down. Rather, it is a combination of top-down and
bottom-up processes. Top-down design may be most effective for developing
individual algorithms and routines. However, it is inappropriate at the system
design level because it promotes one-of-a-kind development rather than the

development of general purpose reusable software components (Meyer, 1987).

41

3.6 Support of Reuse

Optimum software reuse requires a sophisticated software development
environments. Software development environments have attracted considerable
attention over the past five years (Barbacci et al., 1985; Bishop, 1986; Burton et
al., 1987; Fischer, 1987; Rappaport et al., 1988; Ellison, 1988; Cox, 1988). A
software development environment is a compatible set of tools based on a
methodology for different phases of system development and operation. It
supports both technical and management activities (Bishop, 1986). The
environment in which a software system is developed is of crucial importance to
the success of a software project since the environment has a great impact upon
programming efficiency, documentation quality, project management, and

product quality.

To let users take full advantage of previous work, software environments
must support software reuse. Software environments must support design
methods whose main activity is not only generating new programs but also
maintaining, integrating, modifying, and explaining existing ones (Fischer,
1987). Software development environments supporting software reuse generally
should be domain-specific. A domain-specific environment consists of a large
collection of reusable components for a specific problem domain, and the
knowledge of the programming process in the domain has to be embedded in the
programming tools of the environment. Barbacci et al (1985) have given several

possible characteristics of such a software development environment:

e It should be open and integrated -- open so that people other than the
developers can add components, and integrated so that the components
work tdgether with a uniform external interface and style of doing

business;

o It should have a common communication medium for integrating diverse

components into systems;

E

42

o It should be incrementally developed with working interim versions

available at an early date;
o It should be interactive to shorten the software development process;

¢ It should be evolvable so that tool changes do not make the code of the

existing applications developed in the environment obsolete;

¢ It should be learnable and usable with a clean, easy to use, and self-

documenting user interface.

Burton et al. (1987) have developed a Reusable Software Library (RSL)
which is an excellent example of a software development environment addressing
software reuse. The RSL is comprised of the RSL database and four
subsystems: (1) Library management, (2) User query, (3) Software component
retrieval and evaluation (Score), and (4) Software Computer-Aided Design
(SoftCad). The foundation of the RSL is a database which stores the attributes
of every reusable software component. The library management subsystem
provides a set of tools to help the RSL librarian and quality-assurance personnel

manipulate and maintain a software library.

The user query facility provides an interface for users to search for
components with specific attributes and to generate reports about their
attributes. Score helps the user select the most appropriate software to reuse by
identifying components that perform the functions requested by the user and
comparing their attributes to other requirements. SoftCad is a graphical design
and documentation tool that has been integrated with the RSL prototype to aid
the user in the high-level design of software systems. With SoftCad, a designer
can develop a program architecture design by drawing object-oriented design
diagrams that are interpreted by SoftCad and automatically translated into the

Ada design description language.

o

43

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING

Because of its potential to achieve a high degree of reusability and
extendibility of software, object-oriented programming has become increasingly
popular in recent years. Object-oriented programming has been successfully
applied in areas of graphical user-interface and operating systems, as well as

many other diverse application areas.

The object-oriented programming paradigm models real world entities in a
specific application domain directly and naturally as software objects. Object-
oriented languages support the major features or characteristics of object-
oriented programming. Several object-oriented languages have been developed
in the recent years such as Smalltalk (Pinson et al., 1988), C++ (Stroustrup,
1987), Effiel (Meyer, 1988), and Objective-C (Cox, 1988).

In this chapter, the characteristics of object-oriented programming are
briefly reviewed first ir. Section 4.1. The use of this paradigm in the C and C++
languages is discussed in Sections 4.2 and 4.3 respectively. The application of
this methodology in engineering software development is then discussed in

Section 4.4.

4.1 Characteristics

There are five important characteristics of object-oriented programming
(Pinson et al., 1988; and Thomas, 1889): abstraction, encapsulation, inheritance,

polymorphism, and composition. These characteristics are discussed below.

44

4.1.1 Abstraction

Abstraction forms the foundation of all object-oriented development. The
intent of an object is to represent a problem domain entity. The concept of
abstraction deals with how an object represents this representation of the entity
to other objects. This representation is a simplified description, or a
specification of the entity that emphasizes some of the entity’s details while
suppressing others. The stronger the abstraction of an object, the more details

are suppressed.

It is a common practice that the first task in the development of an
application is to decompose it into a set of abstractions which represent the
entities in the real world that the software attempts to simulate. In the
approach of traditional programming, an abstraction is then implemented as a
set of variables of data types provided by the implementation language. Thus,
the original abstractions disappear upon moving from the design phase to the

implementation phase.

For example, the abstraction of a sparse matrix (such as the stiffness
matrix in a finite element analysis) is often represented as an array which stores
the matrix coefficients, an array which stores the information about the non-zero
coefficients distribution in the sparse matrix, and several scalar variables which
store information such as dimension and states of the matrix. Operations on the
sparse matrix are expressed in terms of operations on these separate variables.
Stress and strain tensors, as another example, are often represented as a one-
dimensional array. The correspondence of tensor components with the array
entries is artificially specified, e.g., the array entry s(4) may represent the tensor
component s;5. This representation has to be understood to manipulate a tensor

in a program.

In object-oriented programming, the same abstractions may be preserved

throughout the design and implementation phases. An abstraction may be

P

iy

45

represented explicitly by an object class which mirrors the behavior of the real
world entity. The definition of the class contains the complete information
about the abstraction and all the possible operations associated with this
abstraction. An instance of the abstraction is thus represented as an object of

the specific class in the code.

Using the same examples as mentioned above, an object class for sparse
matrices can be defined of which the stiffness matrix is an instance. Operations
on the stiffness matrix are explicitly expressed in the actual code as operations
with respect to the stiffness matrix instead of operations on some separate
variables which are part of the stiffness matrix representation. An object class
can also be defined to represent tensors. A component of a tensor in the code
can then be expressed in a similar way as in the mathematical notation,
regardless the actual representation and storage of the tensor in computer. For
example, a tensor component sy, can be expressed as sf1, 2). If the class is
implemented in an object-oriented language, operators can be overloaded with
the tensor class such that code dealing with tensor operations will be more
expressive. For example, the addition of two tensors a;; + b;; can be coded as

a + b

The benefits of preserving abstractions in software development are

obvious:

1. The code is more abstract, expressive, and understandable to non-
developers because abstractions of real world entities are represented and

manipulated explicitly in the code;

2. The software component which contains the implementation of the object
classes representing abstractions will be more reusable because the
functionalities of software in a specific domain may not be the same, but
the categories of abstractions in the same domain are more or less the

same;

46

3. The component will be more easily reused due to its high coherent nature.

The decomposition of an application into objects based on the abstraction

principle proceeds in the following manner:
o Identification of the object classes and their properties;
o Identification of the operations performed by and required of each class;

o Establishing the relationships between object classes by inheritance and

composition mechanisms;
¢ Establishing the interface of each object class.

However, following the steps listed above is not an automatic procedure. It
requires a great deal of knowledge about the application domain and good

understanding of the particular application.

4.1.2 Encapsulation

Encapsulation is the technical name for information hiding. The
information hiding principle states that the implementation details of an object
class should be. kept secret from other classes. Objects are encapsulations of
abstractions (Pinson et al., 1988). They encapsulate a set of methods and

properties which are operated on by the set of operations.

Encapsulation together with abstraction separates the representation of an
object class from its implementation details. Thus, it leads to two views of an
object class: the outside view and the inside view. The outside view is the view
by the users of the class. It captures the abstract or external behavior of objects
of the class. By seeing the outside view only, one can use an object class
without knowing how the class is implemented. The inside view is the view by

the implementer. It focuses on the implementation of the behavior which is

47

encapsulated in the object class. The benefits of separating the two views is
obvious. The implementation of the class can be modified or replaced without
affecting the outside view of the class, and therefore, without affecting other

classes which interact with the objects of that class.

Consider the same sparse matrix example again. The implementation
details of the sparse matrix class, such as the storage architecture of the matrix
elements, are hidden from its users. The class can be used to create sparse
matrix objects and to operate on these objects without knowing whether the
class implements the active column storage scheme or the constant band scheme.
Thus the class’ use will not be affected if the storage scheme of the class is

changed.

4.1.3 Polymorphism

One important goal of abstraction in decomposing an application system is
to control the complexity. Controlling of complexity often leads to a hierarchy
of abstractions. An abstraction in a lower level provides more detailed
explanation for the behavior that appears in a higher level (Shaw, 1987). Each
abstraction corresponds to a class of objects in object-oriented programming.
Polymorphism and inheritance (which is discussed in the next section) are two
mechanisms of object-oriented programming that utilize the commonalities or

similarities among classes of objects.

Polymorphism is defined as the ability of different objects to respond
differently to the same messages. Here, the point is that if different classes of
objects respond to the same messages, they can be treated identically, regardless
of how they respond to these messages. Each class of objects should respond to
the same messages in ways appropriate to the kind of object class that it is. The
details of how an object class responds to messages are hidden from the outside

world.

48

From another viewpoint, polymorphism also states that a standard
interface should be defined for object classes which are similar or which are at
the same level of an abstraction hierarchy. Thus, objects of similar classes can
be treated identically. As a result, , it becomes easy to: (1) insert a new class of
objects to a system if the new class shares the same interface as the existing
classes; or (2) replace a class by another which shares the same interface as the
one to be replaced. Polymorphism leads to a style of programming referred to

as differential programming or programming by modification (Thomas, 1989).

For example, several classes for matrix manipulation are develbped in the
C++ language in the present work (Zhang et al., 1990c). Each class represents a
type of matrix which has a certain characteristic such as symmetry or
diagonalness. The operation function product, which multiplies a matrix by a
scalar is defined in different matrix classes with the same function specification.
Thus, such an operation can be coded identically in an application by calling the
function product through the matrix object being operated on, regardless of the
actual class of the matrix object. As another example, a standard interface may
be defined for several sparse matrix classes. Each of these classes implements a
specific sparse matrix storage scheme. Because of the standard interface, the
sparse scheme used in an application can be changed without affecting the other

components in the application.

4.1.4 Inheritance

The other characteristic of object-oriented programming that supports
differential programming is inheritance. Inheritance is the ability to define a
new object class that is just like an old one except for a few minor differences.
A class is called the base class of any class which is immediately under it in the
class hierarchy. A class is called a derived class of its base class. An object class

inherits the properties and methods from its base class as well as from all of its

49

ancestor classes (i.e., all of the classes which are above it in the class hierarchy).
Because a derived class is a more refined specialization of the base class, a
derived class can define new properties and methods for its objects. Thus, an
object of a class can be operated on by the methods defined in all its ancestor
classes as well as the methods defined in its own class. The code implemented
for a class is reused by its derived classes. This is the most important
characteristic that distinguishes object-oriented programming from other

programming paradigms.

Consider the matrix classes mentioned previously. Different matrix
abstractions such as a symmetric matrix, a diagonal matrix, and a lower-triangle
matrix are specializations of a high-level abstraction, a general matrix. These
abstractions are represented respectively by different matrix classes such as the
class Matriz for general matrix abstraction, SMatriz for symmetric matrix
abstraction, DMatriz for diagonal matrix abstraction, etc. The generality and
speciality between these matrix abstractions is utilized in the matrix classes by
defining the class Matriz as the base class for the other matrix classes. The
declaration of the Matriz class contains the common information for matrix
representation such as the dimension of the matrices. Operations are also
defined in the Matriz class which perform the operations applicable to objects of
any specific matrix class. A derived class of Matriz such as the SMatriz or
DMatriz classes only implements operations where advantage can be taken of

the characteristics of the special matrix abstraction it represents.

Class inheritance may be used not only for managing hierarchical
relationships among object classes, but also for system evolution and
incremental modification. A new class of objects can be easily created from an
object class which is similar to the new class by adding more specific details.
The use of inheritance to specify incremental change flexibly is invaluable in

software engineering (Wegner, 1989).

F - &:;A‘:. -

50

Both the characteristics of polymorphism and inheritance are based on
commonalities or generalities among classes of objects. Finding commonality
among objects in a system is not a trivial process. How much commonality can
be exploited depends on how the system is designed. Commonality or generality
must be actively sought when the system is designed, both by designing classes
specifically as building blocks for other classes and by examining classes to see if
they have similarities that can be exploited in a common base class (Stroustrup,

1988a).

It is clear that not everything can be organized into a single inheritance
tree. Single-inheritance systems require that classes are organized into a tree
structure. This can sometimes result in deep inheritance structure that can be
awkward to use (Thomas, 1989). An alternative is based on multiple inheritance

which is supported in several object-oriented languages (C++ supports this).

4.1.5 Composition

Many entities in the real world are often complicated. A complex entity
may contain many entities of other types. This fact is simulated in object-
oriented programming by the composition mechanism. The composition
mechanism states that a complex object may be assembled from objects of other
classes. Thus, the code implemented in the classes of the component objects can
be reused to accomplish the functionality of the complex class. In this way,

composition is another key to reusability (Thomas, 1989).

For example, exception handling is an important feature for many object
classes. When an exception occurs, an object class usually should report the
exception by delivering an error message and sending a signal to the application
to let the application make the final decision on what to do with the exception.
Such a functionality is not hard to implement, but it is cumbersome to include

the same code for exception handling in every object class. Thus, a class can be

51

developed specifically for exception handling. An objects of this class can then

be used in another class as a component of that class for exception handling.

It should be noted that inheritance is a mechanism to create object classes
that share properties and methods with similar classes, while composition is a
different mechanism that allows assembling of composite objects. Thus, in an
object-oriented system, there are often two hierarchical structures, the
inheritance hierarchy, and the composition hierarchy. It is easy to confuse the
two hierarchies. The basic difference between the two is that inheritance is
related to the relationships between the object classes, while composition is the
relationship between the objects, or the instances of different classes. An object

of a composite object class is built using instances of other classes.

4.2 Programming in the C Language

Object-oriented programming (OOP) is simply a paradigm or a style. It
can be performed with any general-purpose programming language to a certain
degree. Nevertheless, as discussed by Stroustrup (1988a), there is an important
distinction between a language which supports OOP and one which merely
enables its use. ‘A language supports the OOP paradigm if it provides facilities
that make the use of OOP convenient, safe, and efficient. A language does not
support OOP if it takes exceptional effort or skill to write programs in which the
paradigm is utilized. In such a case, the language merely enables the use of the

OOP paradigm.

Stroustrup also explains that support for OOP paradigm comes not only in
the obvious form of language facilities, but also in the more subtle forms of
compile time and run time checks for unintentional deviations from the
paradigm (1988a). Thus, if a language is employed which supports OOP,
artificial strict rules on low-level programming details are unnecessary because

these rules will be enforced by the compiler.

Y

It would then appear that use of an object-oriented language is desirable
for object-oriented software development. However, performing OOP with a
classical procedural language may still be a practical and viable approach for
many organizations (Coad et al., 1990). This section discusses techniques for
OOP in the C language. The C language is one of the most widely used
languages in the world today (Kernighan, et al., 1988), and it is the major
language for many software development organizations. In addition to its key
strengths of flexibility, efficiency, availability, and portability, the C language
also provides relatively rich syntactic features that make implementation of
OOP paradigm easier to accomplish than with other procedural languages such
as FORTRAN. However, since C does not support OOP, programmers must

follow strict coding disciplines to code object-oriented features explicitly.

Although the use of C for object-oriented software development is
debatable, there are some reasons for following this approach at the present

time:

o Most object-oriented languages are still in their youth. C is a mature

language and it is more readily available.

o C has a more mature and more readily available programming
environment. Many tools are available in UNIX and other operating
systems for programming in C. In some cases, these tools may not work

well with object-oriented languages such as C++.

In the present research, both C and C++ are used for the development of
reusable components. The use of the C language in the present research follows
the reasons listed above, and also a C++ compiler was not yet available until
late stage of the present work. Moreover, the author feels that study the
techniques of performing OOP in C is helpful to gain a more clear

understanding of the object-oriented paradigm.

iy,

53

There are two major issues involved with object-oriented programming in
C: representation of objects and implementation of message passing. Several
techniques concerning these two issues have been discussed by Linowes (1988),
Bailey (1989), and Meyer (1988). In the following sub-sections, these issues are
discussed with regard to these techniques as well as the approach used in the
present work for the development of GUIDES. A general utility for object-

oriented programming in C, which is named CLOOP, is then presented.

4.2.1 Representation of Object Classes

4.2.1.1 Structure Types for Object Classes

To represent an object class in the C language, it is a common practice to
define a data structure which contains the definition of the properties of the
class, Each field in the structure corresponds to an item of the properties. The
data structure can then be further defined as a structure type by the typedef
instruction. Thus, an object of the class can be declared and manipulated as a
whole in the code. The definition of the structure type may be placed in a
header file. This header file should be included in the C source file which
contains the implementation of this class and, if necessary, in the source files
which contain the implementation of the derived classes of this class. Because a
C file forms a boundary between different code units in a program, this structure
type is unknown to the code units contained in other files where the header file

is not included. Thus, encapsulation of object classes can be accomplished.

However, the structure type of the class has to be known by all the classes
which communicate with this class. To this end, this header file has to be
included in the source files containing implementations of other classes. In doing
so, the possibility of undisciplined access to the fields in the class’ data structure
is risked. An alternative way to accomplish communication between classes is to

introduce a general type of pointer to objects which bypasses the protection

-

boundary of source files. An object sends a message to another object via a
pointer of general type. The pointer is then casted as a pointer to the class
structure type in the methods of the class of the object which receives the
message. However, it is not possible to hide some of the fields while exposing
the others. All the fields of a class’ data structure can only be either exposed or

hidden together.

4.2.1.2 Use of Nested File Inclusion for Property Inheritance

A nested file inclusion mechanism is suggested by Linowes (1988) for
implementation of property inheritance. An object class is implemented in two
source files: class.c and class.p, where class is the name of a class. The .c file
contains the methods and message-handler of a ‘class, and the .p file contains
definitions of the properties of the class. The .p file of a class includes the .p file
of its base class, and is included in the definition of the structure type of the
class. The class’ structure type is contained in the .c file of the class. Figure 4.1
illustrates this approach where a class rectaengle is derived from a class shape
which is in turn derived from a class common. By use of the nested file
inclusion, a derived class possesses all the properties of its ancestor classes.
However, a base class exposes the definition of its data structure to all of its
derived classes. Strict programming discipline is needed here to not permit a

class to access the properties of its ancestor classes.

4.2.1.3 Use of Linked Objects for Property Inheritance

The mechanism used in the implementation of property inheritance in
GUIDES (Zhang et al.,, 1990b) is not satisfactory either. In this design, an

object of a derived class is represented by several objects in memory. These

jﬁu&ﬁh

S

55

common.p
common properties (definition of properties of the common class)
"""""""" shape.p

shape properties #include "common.p”

(definition of properties of the shape class)

ke kel

tangl " rectangle.p
rectangle properties
gle prop #include "shape.p”

(definition of properties of the rectangle class)

. rectangle.c
a rectangle object
typedef struct {

include "rectangle.p”
} Rectangle_Object

(implementation details of the rectangle class)

Figure 4.1 Linowes’ approach for property inheritance (from Linowes, 1988)

objects are linked together by pointers. Figure 4.2 illustrates the memory
organization by this mechanism for an object of a class B, which is derived from

a class A which is in turn derived from the Baste class.

The Basic class is the root of the class inheritance hierarchy of GUIDES.
The data structure of the Basic class contains properties which are common to
all classes such as the class identifier of an object. It also contains a field,
represented by the name p_derived, which references an instance of a derived
class’ data structure. The type of this field is Posnter (i.e., a general pointer
type) to bypass the protection boundary of source files as described previously.
A class derived from the Basic class contains properties which are specific to the
derived class. It may also contain a field, again represented by the name
p-derived which references to an instance of any class’ data structure that is
derived from this class. Any object in the system can then be represented as a
Basse class type. The same problem is experienced by this approach as in

Linowes' approach. The definition of the structure type of a class is exposed to

e

56

Properties of

class Basic Properties of

class A

p—derived o

Properties of

p-derived &
class B

Figure 4.2 GUIDES' approach for property inheritance

the classes derived from it. However, this approach avoids the possibility of
unintentionally accessing a field in the data structure of an ancestor class from a

derived class.

To "support"” object-oriented programming in C, it is necessary to establish
a more general mechanism for encapsulation and property inheritance. The
mechanism should be flexible such that a programmer can choose either to
expose or to hide the definition of the structure type of a class to its derived
classes as desired. Such a mechanism is implemented in CLOOP and is

discussed in Section 4.2.3.

4.2.2 Implementation of Message Passing

Object-oriented programming is largely a style implemented by sending
messages to objects. The operation functions of the receiver objects are invoked
by the messages. This is the key aspect for object-oriented programming, and it

needs to be coded explicitly in C.

-~

57

Polymorphism requires that an object should be able to send a message to
another object without necessarily knowing the class of that object or the
method which will be invoked. For example, an object should be able to send a
message Draw to another object without knowing whether the object is a circle,
a rectangle, or a curve, and withou