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ABSTRACT

Zhang, Hong. Ph. D., Purdue University, May 1991. A Structural Engineering 
Software Development Environment. Major Professors: W.F. Chen, D.W. 
White.

An evolution of the traditional disciplines of structural engineering and 

computational mechanics driven by the rapid advances in computer technology 

is currently underway. Research and instruction in these areas are becoming 

more software dependent and more software intensive. The success and pace of 

this evolution depends on the rapid and economic development of domain 

specific applications software.

The SESDE (A Structural Engineering Software Development 

Environment) is an attem pt to provide a systematic support for the 

development of structural engineering software systems. SESDE is centered 

around the concept of software reuse, based on object-oriented programming 

technologies, and composed of reusable software components and domain- 

specific CASE tools facilitating reuse. The present work focuses on the reusable 

components, and attem pts to build the basic SESDE framework and to establish 

a model of such an environment which may be useful to other engineering areas.

The reusable components are classified in four groups: (l) a graphical user 

interface development system (GUIDES); (2) an object-oriented database 

management system (ODBMS); (3) a generic object class library for engineering 

computing in general; (4) a structural engineering specific object class library. 

GUIDES is developed and has been used in research software development and 

instruction. GUIDES has features which have not been well addressed by 

existing commercial systems. A set of classes in the generic object class library
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is developed. These include classes for general data structures and utilities, for 

full matrices, and for sparse matrices. Techniques for engineering database 

management are reviewed. It is concluded tha t a commercial ODBMS should be 

integrated and adapted to support the features of the environment. Specific 

issues associated with the integration are given. Necessary follow-up work of the 

SESDE are outlined including both long-term development and short-term 

application of the SESDE components. The long-term tasks are to complete the 

SESDE system development, which includes the enhancement of the GUIDES, 

the integration of an ODBMS, the development and enhancement of the 

structural engineering specific and generic class libraries, and the development of 

CASE tools. The short-term tasks are focussed on the promotion of the use of 

existing reusable components.
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CHAPTER 1 INTRODUCTION

Due to rapid advances in the power and potential uses of computers in 

recent years, traditional engineering disciplines have been undergoing 

tremendous changes. The rapid advances in workstation technology, 

characterized by multitasking, networking, large memory and addressing, high- 

resolution graphics, and interactive graphical user-interfaces, have introduced a 

new style of computing for engineering research and instruction. This new style

of computing offers many advantages over the mainframe and personal

computing. Some of these advantages are:

1. User-computer interaction can be accomplished by graphical means, and 

complex information can be represented with real-time two- and three- 

dimensional graphics;

2. Multitasking can be accomplished without degradation of performance. 

The large screen of a workstation can be occupied by one or more

windows, and several tasks can be performed simultaneously in these

windows; and

3. Collaborative work can be facilitated. A workstation is viewed not as an 

isolated island but an integral part of a  network. Resources such as 

programs and databases may be shared over the network.

Under the influence of rapidly advancing computer technology, engineering 

research and instruction are becoming more software dependent and more 

software intensive. Two challenges are now facing the university computing 

environment:
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• The development, maintenance, and extension of advanced instructional 

software th a t will stimulate student interest and learning in an optimum 

way.

• The full utilization of advanced hardware, the timely development of new 

methods and approaches in engineering computation, and the use of these 

tools to provide new insights in engineering research.

The development of high-quality engineering research and instructional 

software is not keeping pace with the increasing demand for such software, and 

there is a widening gap between potential and actual computing capabilities. 

Many existing engineering research and instructional software systems lack 

extensibility and flexibility for modification. It is therefore difficult to update 

these systems to take full advantage of new research and teaching developments, 

and new hardware and/or software capabilities. Moreover, in spite of the 

availability of improved programming tools, the development of new 

applications software becomes increasingly difficult due to the added complexity 

of new applications. A software crisis is apparent in engineering computing in 

general, and engineering research and education in particular. Specifically, this 

crisis involves the high cost of software development and maintenance due to 

inadequate software design. This is especially critical in research because of the 

dynamic nature of the research environment.

Problems with software development and maintenance became well 

recognised in the computer science profession in the early 1960’s. The discipline 

of Software Engineering emerged in the late 1960’s as a result of the attem pts to 

overcome these problems. Since then, many advancements have been made. 

Recent progress in the software engineering area includes the development of 

object-oriented programming methodologies and software development 

environments with extensive Computer-Aided Software Engineering (CASE) 

tools. These activities have provided great potential for increasing software
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production efficiency and quality in general. Specifically, they have given rise to 

an unprecedented opportunity to infuse computer technology into all areas of 

research and instruction, and to give momentum to advancements in engineering 

science.

However, this potential has not been fully utilized in engineering 

computing. Much of engineering software still remains on older computer 

technology and is being outpaced by new software and hardware advances. 

Also, many of the present software development environments are general 

purpose in nature. In order to achieve their full potential, these environments 

need to be combined with specific application-domain tools. Research is 

urgently needed in the application of advanced software development 

methodologies to improve software quality and productivity in engineering. 

This research intends to merge software engineering principles and 

methodologies to the development of structural engineering software systems.

This chapter gives an overview of the present research. The software 

related problems and difficulties (i.e., the software crisis) in structural 

engineering computing are first highlighted in Section 1.1. In Section 1.2, 

software reuse and software development environments are briefly discussed as a 

potential solution to the crisis. Section 1.3 outlines an envisioned programming 

environment for structural engineering software development. Sections 1.4 and

1.5 describe the reusable software components and CASE tools in the envisioned 

environment. The objective and scope of the present research and the 

organization of this thesis are described in Sections 1.6 and 1.7 respectively.

1.1 A Software Crisis in Structural Engineering Computing

Software systems used in structural engineering computing in the 

university environment can be generally grouped in two major categories: 

research systems and Computer-Aided Instructional (CAI) systems. A software
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crisis in structural engineering exists tha t involves the high cost of development 

and maintenance of these systems due to inadequate software design and 

development.

1.1.1 Instructional Software

Computer-Aided Instruction (CAI) has become feasible only recently due 

to the growth of workstation and advanced personal computer technology. The 

capabilities provided by workstations and "high-end" personal computers such as 

high-resolution color and gray-scale graphics and ergonomically designed 

graphical user-interfaces, are necessary features of CAI software. The 

combination of artificial intelligence techniques with these capabilities (to 

develop Intelligent Computer-Aided Instructional or ICAI software) is an area of 

great promise which at present is still in its infancy.

Generally, CAI and ICAI software is difficult to develop, modify, and 

maintain. CAI and ICAI programs should ideally be developed in a university 

environment because teaching experience is essential to achieve the desired 

functionality. However, even with the advances in present software technology, 

CAI software systems development based on new computer technology still 

requires a long development period. Due to inadequate software development 

environments and tight schedules for design, development, and testing, these 

systems often are low in quality and portability, and they are hard to maintain 

and modify. Often, there is not a  com m on code base for programs in the same 

area, and different programs contain a great deal of duplicate coding. Code 

which accomplishes the same functions is re-developed again and again in new 

programs. Also, many programs often do not have the flexibility to adapt to 

evolving computer environments and computer hardware. Therefore, they can 

easily become obsolete.

(
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1.1.2 Research Software

University researchers should take the lead in the investigation and 

demonstration of approaches which take full advantage of improved computing 

capabilities. However, to demonstrate new approaches in a timely fashion, 

university researchers must increase their software productivity.

At the early stage of engineering computation (1960’s and 1970’s), many 

software systems were developed by using ad-hoc software development 

techniques. As engineering software systems increased in size and complexity, 

problems with ad-hoc approaches in software development, specifically error- 

proneness and high cost, became apparent. Great efforts have been made to 

improve software quality and to reduce development and maintenance costs. 

Various techniques have been proposed including top-down structural 

programming, database management, problem-oriented languages and virtual 

machine, documentation quality standards, and use of subroutine libraries.

I  However, the software crisis remains. This is true particularly in the university

environment.

A t the present time, many existing engineering software systems are one- 

of-a-kind software. Such systems are built by components which are designed 

and developed only for a specific application. The design philosophy of many 

programs is to include all important tools for a  particular field in a single 

system. For example, in a finite element system, many different types of 

elements and many constitutive models may be included. However, only a few 

modules in a system are actually used for solving a particular problem. Often, 

these systems are large, and, if the software is not designed properly, they may 

contain many complicated interlinked modules. They often may have 

undocumented dependencies on hardware, operating system, graphics libraries, 

etc. This makes the maintenance of these systems very difficult.

f
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The extension of these programs to accommodate new techniques or 

procedures is even more difficult. Because the modules in the system are often 

closely interlinked, bugs may be introduced in other modules when a module is 

modified or added to the system. In order to modify or extend one module, one 

has to understand most, if not all of the modules in the system. However, if one 

wants to utilize a general purpose system in research, modification is usually 

unavoidable.

Code duplication is common within and across many of these types of 

systems. The same piece of code may be developed again and again among 

different software components and for different software systems because of 

difficulties in reusing existing software. In a university environment, it is not 

uncommon that researchers might devote an inordinate amount of their time to 

software development and maintenance ~  time which might be otherwise spent 

on more fundamental research issues if advanced software engineering 

approaches and tools were available to facilitate reuse. Thus, the critical issue is 

lack of software reusability due to improper design and development. Due to 

the lack of software reusability, efforts spent on software development often 

cannot be accumulated. This is a great waste of resources and a severe 

hindrance to advancements in engineering research.

In summary, advances in computer technology provide engineers the 

potential to speed up their pace and widen their range of engineering research, 

and to make engineering education more interesting, challenging, and effective. 

Advances in engineering science have created a demand for high-quality software 

systems utilizing new hardware capabilities effectively and efficiently. However, 

due to the difficulties frequently encountered in maintaining existing software 

and in developing new software, the tremendous increases in computing power 

offered by modern computers cannot always be fully utilized to meet the 

demand. A t the present time, software development and maintenance are the
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main barriers in the infusion of advanced computer technology in engineering 

research and education. A software crisis involving the excessive time associated 

with software development and maintenance is thus apparent.

To overcome this crisis and to meet the increasing demands on research 

and instructional software, research is urgently needed in the application of 

software engineering principles and methodologies to engineering computing in 

general and structural engineering in particular. An integrated, domain-specific 

software development environment centered around the concept of software 

reuse may help to solve this crisis.

1.2 Software Reuse and Domain-Specific Environments

A potential solution to the software crisis is to improve the reusability of 

software components. Software reuse plays a crucial role in software 

development because it enables the knowledge about a problem domain to be 

accumulated and shared. It promises substantial improvement on several 

aspects: software productivity, maintainability, portability, quality, and 

standardization.

The idea of software reuse is not new. Creating subroutine libraries such 

as IMSL is the classical approach for software reusability. However, as will be 

discussed in Chapter 3, this approach is not sufficient to achieve a large-scale 

improvement in software quality, productivity, and maintenance. It is also not 

feasible to  decompose existing software systems into reusable components. 

Reusable components should be carefully designed. Special design and 

implementation techniques are necessary to achieve reusability. Object-oriented 

programming appears most promising for attaining reusability of software 

components. This technique will be discussed further in Chapter 4.
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Software development environments, generally known as Computer-Aided 

Software Engineering (CASE) systems, are a compatible set of tools, usually 

based on a specific software development methodology. These tools can be 

employed for several phases of software development and operation. There are 

hundreds of such systems available in the market, and more become available 

each year. Currently, most software development environments are general 

purpose in tha t they can be applied to any application domain. However, to 

make CASE systems more useful and attractive to software developers in 

different application domains, it is necessary to tailor the environments to 

specific application domains. That is, it is necessary to develop domain-specific 

software development environments (Dunsmore, 1990).

To take full advantage of previous applications software development, a 

domain-specific software development environment must support software reuse 

in the targeted domain. It should consist of a large collection of reusable 

software components and tools supporting software reuse for the targeted 

domain. Some knowledge of techniques and practices in the domain of interest 

has to be embedded in the environment’s tools. These features distinguish 

domain-specific environments from general-purpose environments. Research on 

domain-specific software development environments is of great interest to both 

computer scientists and software developers in different application domains.

A domain-specific software development environment for structural 

engineering computing is the goal of the present research. This environment is 

named the SESDE, which is an acronym for Structural Engineering Software 

Development Environment. It is hoped the envisioned environment will make a 

significant impact on the software quality and productivity in software 

development for structural engineering research and instruction. The envisioned 

environment provides general tools th a t are directly applicable to other areas, 

and its specific tools should indicate directions for development of domain- 

specific tools in other areas.
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The development of the SESDE is justified due to several important 

practical reasons as described below.

1. Research is needed to apply software engineering principles and 

technologies to specific engineering domains and to build domain-specific 

software development environments. The present work on SESDE 

demonstrates a possible engineering domain-specific software development 

environment and its potential in improving software productivity and 

quality. It provides directions to alleviate many of the current software 

problems in engineering and scientific research and instruction.

2. The increasing demands on research and instructional software require the 

development of the SESDE. Although some software development tools 

are starting to become available in the software market (e.g., standardized 

graphical user-interface tools, database management systems, and 

Computer-Aided Software Engineering (CASE) tools), the software tools 

necessary for the structural engineering software development are 

currently either inadequate, not portable, or unavailable. The integrated 

software development environment envisioned will not be commercially 

available in the foreseeable future.

3. The domain-specific nature requires the development. Reusable software 

components for structural engineering computing constitute probably the 

most im portant part of the environment. These components will be used 

as basic building blocks for research and CAI software systems. Such a 

library of reusable software components has not been seen on the 

commercial market, and it must be developed by structural engineering 

researchers, staff, and students themselves.

f
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1.3 A Structural Engineering Software Development Environment

1.3.1 Motivation

Meyer stated (1988), "Reusability, as a dream, is not new." The author 

also has had this dream for a long time. The present research is an attem pt to 

make the dream a reality.

To provide systematic support to software development, reusable software 

components for structural engineering computing have to be identified, designed, 

implemented, and maintained. A software development environment is 

necessary which consists of these components and the necessary programming 
tools, and which provides systematic support for structural engineering software 

development. These considerations have motivated the development of the 

domain-specific Structural Engineering Software Development Environment 

(SESDE).

The envisioned SESDE consists of reusable software components and 

CASE tools which support software reuse. In the SESDE, the software 

components will include both structural engineering specific and general-purpose 

components whose use is not limited to structural engineering. The CASE tools 

of the SESDE are utilized for managing the software components and helping 

programmers to find and integrate components into applications.

1.3.2 Development Methodology

Object-Oriented Programming (OOP) is the key methodology employed to 

achieve the goal of the SESDE. This is because software reusability is the 

central objective of OOP. This programming methodology facilitates a  new 

style of software development based on large number of prefabricated software 

components. This new style of software development should be more productive 

than previous styles. Software developed in this way should be less error-prone, 

more abstract, more readily modified, and more extendible.
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1.3.3 Design Philosophy

Where possible, the environment should be built from currently available 

software components and CASE tools. New software is to be developed where 

current software is inadequate, incompatible, or unavailable. The research on 

this environment focuses on the integration of tools that support the

development of application-specific programs for both research and instructional 

activities.

As mentioned previously, object-oriented programming is the major 

methodology for the software components developed in the environment. The 

C + +  language has been chosen as the major implementation language. 

However, the environment does not force applications to follow the object- 

oriented methodology or to use the C + +  language. Where possible, interfaces 

for conventional languages such as C and FORTRAN are provided for software 

components of the environment.

1.3.4 Features

It is im portant to emphasize tha t the SESDE itself does not involve the 

development of general purpose systems for structural analysis, design, etc. 

Rather, it is an integrated environment for systematic support and development 

of specific and/or general purpose application programs for both research and 

instructional activities. The envisioned Structural Engineering Software 

Development Environment has the following three im portant features:

1. The environment facilitates the integration of software components. In 

this regard, the compatibility among individual components and different 

CASE tools is the key issue.

2. The environment is an open environment. Investigators working in related 

areas at the same site or a t remote sites may extend the environment by
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adding components and/or CASE tools to the environment.

3. The environment is domain-specific for structural engineering. However, 

many of its components and CASE tools are directly applicable to other 

engineering domains.

1.3.5 Benefits

The following benefits are expected from the SESDE:

1. New substantial applications may be built more efficiently based on reuse 

of software components accumulated from previous software development. 

Rapid prototyping of new algorithms and new approaches needed for 

effective research can be more easily accomplished.

2. The effects of hardware, operating system, and graphics library evolution 

may be resolved within the SESDE system without affecting the 

applications.

3. The sharing of software and collaborative work among developers in the 

same or remote sites can be greatly facilitated.

4. New computer technologies such as computer graphics, advanced user- 

interfaces, and databases management can be made more readily available 

to researchers.

1.4 Components of the SESDE

1.4.1 Classification

The components of the SESDE are developed as object classes. According 

to an object-oriented methodology, the envisioned environment is composed of 

the following groups of object classes:
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1. Object Sub-Systems: Several levels of classes can be related by an 

inheritance mechanism and grouped together to form a sub-system which 

implements a high-level abstraction of a particular engineering software 

tool. The envisioned SESDE includes the following three sub-systems:

• A Graphical User-Interface Development System;

• A Database Management System;

• An Artificial Intelligence System;

2. Generic Object Classes for Engineering Computing: Object classes in this 

group include the representation of basic mathematical entities such as 

matrices, vectors, tensors, and functions (the mathematical meaning rather 

than the programming meaning). Other classes in this group are those 

used for basic data structure representations and general utilities in 

engineering software. Examples of these include text strings, extendible 

arrays, and an exception-handling utility etc.

3. Specific Object Classes for Structural Engineering Computing: Specific 

sets of object classes are needed to facilitate applications software 

development in the structural engineering domain. Typical examples are 

object classes for finite element analysis.

These classes are described in the following sections.

1.4.2 A Graphical User-Interface Development System

Interactive graphical user interfaces are an essential part of modern 

engineering software. However, the code which handles the graphical user- 

interface is often complex and difficult to debug and modify. It accounts for a 

significant portion of the code of interactive graphics applications. Therefore, 

the design and implementation of the user interface of a program is a very
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im portant but difficult task. To ease the development of and to allow rapid 

generation and modification of graphical user interfaces, and to provide a crucial 

layer between applications software and the various evolving user-interface 

environments, a Graphical User-interface Development Sub-System is necessary. 

This system, called GUIDES, is a software tool consisting of reusable software 

components for creating and handling the graphical user-interface of 

applications. The design of GUIDES (Zhang, et al. 1990) has evolved from a 

study of currently available user-interface tools such as the Macintosh Toolbox 

(Mednieks, et al. 1986), MacApp (Schmucker, 1987), HyperTalk (Shell, 1988), 

and the X I1 toolkits (McCormack, et al. 1988).

The GUIDES system provides programmers with a reasonably complete set 

of user-interface tools such as menus and dialogue boxes. GUIDES has facilities 

similar to the emerging GUI standards such as OSF/M otif (Open Software 

Foundation, 1990), and it is fully integrated with a modern object-oriented, 

three-dimensional graphics library, HOOPS (Wiegand, 1988). The key feature 

of any graphical user-interface development system is the achievement of a 

better separation between the user-interface and other components of an 

application (Dodani, et al. 1989). GUIDES provides an Interface Description 

Language to achieve this feature. Applications can use this language to specify 

their user-interface independently of the application-specific code.

W ith such a system, researchers can concentrate their efforts on the 

functionality of the program at hand without getting bogged down in the details 

of implementing the user-interface. The complexity of the design and 

implementation of the graphical user-interface is significantly reduced. The 

code for creating and handling the user-interface is completely separated from 

the computational components of applications. Application-specific and user- 

interface components can be independently designed, developed, tested, and 

modified. A detailed description of GUIDES is given in PART TWO.

f



www.manaraa.com

15

1.4.3 A Database Management System

Engineering analysis and design software systems usually need to handle a 

large amount of data. A typical program needs to obtain input data either 

interactively or from databases in the file system. It must also check the legality 

of the input data to ensure the correctness of the computations. The code that 

handles the data input is the most cumbersome and error-prone part in many 

programs. Furthermore, in most modern applications, the input process is 

substantially compressed by the use of sophisticated user-interfaces and 

computer graphics. The resulting data is then greatly expanded prior to 

performing the engineering tasks. The input data and the large amount of data 

created during execution of a program must be passed to and received from 

different code units to perform the desired operations. A program also needs to 

store the computational results for further processing. Often, several databases 

are shared by a number of systems. Thus, the enforcement of data consistency 

between different systems becomes an im portant issue in software development. 

In many cases, data handling is where the inflexibility and inextensibility occur.

A database management system responsible for the data transfer from the 

user to the program, between code units in the program, and between different 

programs, is thus necessary. The database management system envisioned for 

the SESDE is vital to the development of standardized reusable components and 

to the integration of reusable components into applications. W ith this system, 

application programmers will be substantially relieved from the handling of data 

input, data transfer between primary and secondary memory, and enforcement 

of data consistency between applications and application components.

During the period of the present research, a new technology, Object- 

Oriented Database Management Systems (ODBMS), is emerging and appearing 

on the commercial market. This new technology offers many advantages over 

the older database technologies. The development of an ODBMS involves an 

intensive software development effort. Thus, it is not feasible to develop an
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ODBMS component for the SESDE. Rather, a commercially available ODBMS 

should be integrated into the SESDE. This aspect is similar to the integration 

of HOOPS into the SESDE for handling the basic graphics functionality. 

Enhancements to a DBMS will generally be required tha t are similar to the 

development of the GUIDES software which enhances the HOOPS in the aspects 

of handling graphical user interfaces. The discussion of the issues involved with 

integration of an ODBMS into the SESDE is given in Chapter 13.

1.4.4 An Artificial Intelligence System

Artificial intelligence based tools are being used increasingly in domain- 

specific engineering applications. The tools are particularly attractive for 

tackling ill-structured and ill-posed problems. There is a whole range of 

engineering problems, ranging from analysis to design and optimization, tha t do 

not gracefully lend themselves to rigid algorithmic solutions. When integrated 

with graphical user interface and database management systems, an 

environment utilizing current developments in artificial intelligence techniques 

would provide a powerful research tool.

For example, the complexity of the problems typically addressed and the 

substantial amount of data and knowledge generated by research can provide a 

useful testbed for neural network applications. Furthermore, a knowledge based 

expert system could be used to query, maintain, update, and scrutinize the 

validity and reliability of engineering data and knowledge bases. A knowledge 

based system can also be used to aid in quickly familiarizing a user with the 

details of a particular application program or of a software component. This 

will expedite the integration of new software with existing codes. Moreover, a 

knowledge based system can be used to control and monitor the processes of 

analysis, design, redesign, and optimization, as well as help interpret results and 

suggest possible avenues for further action.
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Artificial intelligence tools can be used in tandem with research 

applications to build powerful and attractive ICAI (Intelligent Computer Aided 

Instruction) courseware. This courseware, formulated with the help of 

experienced faculty, will give students greater control and flexibility in the 

learning process.

In the SESDE, the artificial-intelligence system will be based in part on a 

suitable domain-independent expert system shell providing an adequate 

inference and knowledge acquisition mechanism. However, the development of 

this system is not included in the present research.

1.4.5 Object Classes for Engineering Computing

There are a number of basic mathematical entities which are commonly 

manipulated in engineering software. Such entities include matrices, vectors, 

tensors, single variable functions, (i.e., y =  f(x)), and functions of multiple 

variables (i.e., y =  f(x1( x2, ...., xn)). Manipulations on these basic entities often 

constitute the fundamental part of an engineering program. In traditional 

programming languages, these entities often are represented implicitly by 

variables of different built-in data types. For example, a full matrix often is 

represented by an array and its dimension variables, and a sparse m atrix is 

represented by a one-dimensional array which stores the elements of the matrix, 

an index array, and several integer variables such as the array’s dimension, 

band-width, etc.

By using object-oriented paradigms and object-oriented languages, these 

entities can be explicitly represented and manipulated by corresponding object 

classes in software. Each entity will be an object of a  particular class and can 

be manipulated in a way similar to its corresponding mathematical expressions. 

Thus, based on these classes, operations on these mathematical entities will be 

coded more abstractly and expressively, and they will be less error-prone.
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There are also some basic data structures and general utilities which are 

commonly used in engineering software. The extensible array is a typical 

example among the basic data structures. The array type is a built-in data 

structure provided in all general-purpose languages. The size of an array can 

not be changed once the array is created. This causes problems when the exact 

number of elements required is not known a t the time of array creation. The 

extensible array is a data structure used to create arrays for any specific element 

type. The size of an extensible array may be automatically extended whenever 

it is necessary. At the same time, the elements of the array can still be accessed 

by using an index which is the same as the built-in array data structure. An 

exception-handling utility is a typical example of general utilities. When an 

exception occurs in an application, this utility may report the error, invoke 

application-specific error-handlers, and send a signal to the operating system to 

abort the execution of the application if necessary.

Reusable software components which implement these basic data 

structures and general utilities are necessary for efficient development of quality 

engineering applications. It is very difficult to develop such components and 

make them easy to use with traditional programming languages. Object- 

oriented methodologies and languages make the development possible and 

feasible.

A set of general object classes for engineering computing has been 

developed in the present research (Zhang, et al. 1990) as a part of the envisioned 

environment. These classes are described in PART THREE.

1.4.6 Object Classes for Structural Engineering Computing

The components described in the previous sections are general-purpose in 

that they can be used readily in the development of any engineering software. A 

group of reusable components specifically for structural engineering computing is
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an essential part of the envisioned environment.

Many different components may be utilized in any particular set of 

structural engineering applications. Among these are many common or similar 

software components. Object-oriented programming provides the means to 

utilize both commonality and similarity.

One example of this is a family of classes which implements different 

element types in a finite element analysis. A generic element class may be 

developed which can be used as the base class for any specific element type. A 

class for a specific element type would inherit the properties and methods 

defined in the generic class. Only the properties and methods which are specific 

to a particular element type would then need to be implemented for a specific 

element class.

Other families of classes for finite element analysis would include those for 

various types of constitutive models, integration algorithms, and global analysis 

strategies. Standard interfaces can be made for the classes in each family such 

tha t a programmer can easily integrate them into an application without 

knowing their implementation details.

These types of classes will form a structural engineering specific object 

class library to facilitate structural engineering software development. This 

library and the general-purpose reusable components described in previous 

sections can be utilized in the development of specific structural engineering 

applications. Any new component developed for a specific application can also 

be stored in the structural engineering specific class library for future reuse. As 

a result, this library will grow progressively as new applications are 

implemented. However, this development is not included in the present work.

(
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1.5 Domain-Specific CASE Tools

Software components form the foundation of software reuse in the 

development of applications. However, if software reuse is to become a reality, 

CASE tools are needed to manage the software components and to assist 

programmers with: (1) finding and selecting reusable components, and (2) 

integrating reusable components and software tools with application-specific 

components to build an application. Several CASE tools are envisioned here, 

but the specific development or integration of these tools within the SESDE is 

not included in the present work.

Three of these envisioned CASE tools are described in the following sub­

sections. The first two CASE tools are general purpose, tha t is, they can be 

used for software development in any specific engineering domain. The last one 

is structural engineering specific since knowledge of programming techniques 

and types of applications in the structural engineering domain is embedded in 

the tool. However, the framework of the tools is still general and may be 

adopted by other engineering areas.

1.5.1 A Tool for Graphical User-Interfaces

As described previously, applications can represent their graphical user- 

interface through the GUIDES description language. A construction tool for 

graphical user-interfaces may be included in the envisioned environment. This 

tool will allow programmers to graphically define the entire interface of an 

application and then automatically generate the user-interface specification. It 

will provide a necessary facility for rapid prototyping and incremental 

development of application user-interfaces.
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1.5.2 A Tool for Reusable Component Libraries

The software libraries described previously will form databases of reusable 

software components. Not only should these databases contain the code 

corresponding to each of the software components, but also they should 

maintain information about each component such as a component’s specification 

and the dependency between a component and other components. A CASE tool 

is necessary for proper management of these libraries. This tool will help 

authorized personnel manipulate and maintain the libraries. It will also provide 

an interactive interface for programmers to retrieve information, such as a 

catalogue of components or the specification of an individual component from 

the libraries. Furthermore, this CASE tool will also be used to search for 

components with specific attributes.

1.5.3 A Tool for Application Development

Application development processes can be automated by use of a large 

collection of reusable software components in a specific domain. The computer 

should become an active and efficient assistant for the building of applications. 

A computer-aided application development tool may be developed to facilitate 

autom ated software development for structural engineering.

A programmer will input the requirements of an application to this 

system. According to the requirements, the system will check if reusable 

components in the library are sufficient to construct the application. If they are, 

these reusable components will then be integrated by the system to form the 

application. If they are not, the system may inform the programmer of which 

components need to be developed for the application. With the help of such a 

tool, applications can be developed in a more efficient manner. With this type 

of tool, the traditional general-purpose analysis program containing many 

software components may not be necessary because a program containing only
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the necessary components for a specific analysis can be generated directly. A 

program generated in such a way will be much smaller and more efficient than a 

general-purpose program.

1.6 Objective and Scope

The critical issue addressed by the present work is that efforts made on 

development and extension of software for engineering computing often cannot 

be accumulated. Rather, they become wasted. A potential solution is to 

improve the reusability of software components. The objective of the work is 

the design and development of a software development environment tha t 

promotes software reuse in the specific structural engineering domain. This 

environment should provide a systematic support to the development of 

applications software, as well as serve as a crucial layer between structural 

engineering applications and the evolving computer technology.

The present work attem pts to build the basic framework of the SESDE, 

and to establish a model of such an environment for other engineering areas. 

Herein, the architecture and major components of this environment are 

identified. Requirements are established for many of the components. Several 

of the components are designed and implemented. The necessary technologies 

for the design, development or integration of other components are outlined.

Software engineering methodologies for engineering software development 

in general, and object-oriented programming approaches in particular are 

reviewed. Basic functionalities of the graphical user-interface development 

system are designed and implemented. The application of general database 

management technology to engineering software is evaluated, and the issues 

involved in integrating a commercial object-oriented database management 

system with the SESDE are investigated. A set of general object classes for 

engineering computing are designed and developed.
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1.7 Organization of the Thesis

This thesis is composed of three parts and three separate chapters. This 

chapter is an overview of the present research.

PART ONE gives an overview of software engineering principles and 

technologies that will be applied in the development of the SESDE. There are 

four chapters in the first part. In Chapter 2, software engineering technologies 

are briefly reviewed. Chapter 3 discusses software reusability issues. A 

summary on the object-oriented programming paradigm and the use of this 

paradigm in the C and C + +  languages are presented in Chapter 4. Lastly, 

Chapter 5 discusses the topics on how to apply software engineering principles 

and technologies in the SESDE development.

PART TWO deals with the Graphical User-interface Development System 

of the SESDE (GUIDES). The current technology of the development of user- 

interface tools is discussed first in Chapter 6. Chapter 7 gives an overview of 

the development of GUIDES. A detailed description of the GUIDES is given in 

Chapter 8.

PART THREE describes object classes for engineering computing in 

general. The current state-of-the-art in engineering software development is 

first reviewed in Chapter 9. General object classes currently in the SESDE 

object library are then described in Chapters 10, 11, and 12.

Chapter 13 addresses the requirements for a Database Management 

System of the SESDE. Current database management technologies are 

reviewed. The issues of applying these technologies for engineering data 

management and the integration of a commercial object-oriented database 

management system with the SESDE are discussed.

Chapter 14 provides the concluding remarks. Relevant references are 

listed a t the end of each corresponding part.
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PART ONE

OVERVIEW OF SOFTWARE ENGINEERING TECHNOLOGIES
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CHAPTER 2 BACKGROUND AND CURRENT ISSUES

The discipline of software engineering was born in the late 1960s to 

overcome the so-called "software crisis" (Bishop, 1986). This crisis resulted 

directly from the introduction of a new generation of computer hardware. 

These computers were orders of magnitude more powerful than the older 

generation, and their power made hitherto unrealizable applications become 

feasible. The implementation of these applications required building large 

software systems. However, existing techniques which were applicable to small 

systems could not just be scaled up, and were inadequate for building large 

systems.

A number of major projects were late, unreliable, difficult to maintain, 

cost much more than predicted, and performed poorly. Software development 

was then in a crisis situation. Hardware costs were down while software costs 

were rising rapidly. Thus, there was an urgent need for new techniques and 

methodologies which allowed the complexity and costs of large software systems 

to be controlled, and the people involved in software development to be 

managed and motivated (Sommerville, 1985). The field of software engineering 

was born to meet these demands.

The term  Software Engineering is defined as "The profession of applying 

scientific principles to the design, construction, and maintenance of computer 

software systems" (Sommerville, 1984). This definition emphasizes tha t 

software engineering addresses all stages of the life-cycle of a piece of software: 

specification, design, implementation, validation, operation, maintenance, 

extension, and reuse. At present, software engineering principles are well
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established with regard to central issues such as program structure, program 

design technique, user-interface design, program documentation, software reuse, 

and software development environments. These principles have been 

successfully applied in the computer science profession.

This chapter presents a brief overview of software engineering 

technologies. In Section 2.1, the classical software life-cycle model is described. 

Section 2.2 discusses important characteristics of a well-engineered software. 

Lastly, in Section 2.3, some issues in current software engineering research are 

highlighted.

2.1 The Software Life Cycle

In the development and use of a software system, a number of distinct and 

interacting phases can be identified. The term software life cycle is used to 

describe these phases of a software system. In the traditional software 

engineering approach, the life cycle of a software system is broken into five 

major phases: specification, design, implementation, testing, and operation and 

maintenance.

1. Specification: The first stage in producing a software system is to generate a 

requirements specification which defines the functions to be performed by the 

system and the constraints on the system. The resulting software specification is 

not concerned with the internal operation of the system but rather with its 

external characteristics.

2. Design: A software design is a machine independent statement of how 

individual program units must interact to implement the software specification. 

The quality of the design of a piece of software affects not only the 

implementation of the design but also the life cycle costs of the resulting 

product. A well designed program will not only be more reliable and require less
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maintenance than a program developed in an ad hoc manner, but also it can be 

more easily modified as the product requirement changes during its lifetime. A 

traditional design methodology used in the development of software systems is 

top down structural programming. In this methodology, the design is developed 

in a series of stages with each successive stage being a more refined version of 

the last until, finally, the complete system design is produced.

3. Implementation: The software design is realized in this phase by code written 

in a computer programming language which can be executed by the target 

computer destined to run the software system. The implementation of a 

software system must involve two important considerations: the programming 

language and the programming environment to be employed. The programming 

language, which is the medium through which programmers build the system, 

affects the ease of development and maintenance of the system. The 

environment in which a software system is developed is of crucial importance to 

the success of a project since it has a great impact upon programmer efficiency, 

documentation quality, project management and product quality (Depledge, 

1984).

4. Validation: This phase involves the validation tha t the implemented software 

meets the requirements of the user. To increase overall confidence in the 

software, it is necessary to perform tests to identify and correct errors 

introduced in the system during the implementation phase. Moreover, during 

this phase, it is common to detect errors and misunderstandings in the 

functionality of the system introduced in the preceding phases.

5. Operation and Maintenance: After the software is in use, it may be necessary 

to correct errors detected or to modify the software to meet changes in user 

requirements. This phase is also called "software evolution". Overly complex 

program structures are generally the result of evolutionary development rather 

than a single creative act. This is especially true for large software systems.
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It should be noted that the software life cycle is a cyclic rather than a 

sequential process where each phase interacts with preceding and succeeding 

phases. Usually, work done in an early phase of the cycle must be redone as 

problems arise in later phases. Costs of software development are not equally 

distributed in these phases. It is estimated (Sommerville, 1984) that the first 

three phases, specification, design, and implementation, each accounts for about 

20% of the total initial costs with the remainder taken up by validation. 

Typically, the maintenance cost is much higher -- about five times the 

development costs.

2.2 Characteristics of Well-Engineered Software

According to the cost distribution over the life cycle, a well-engineered 

software should exhibit three basic and dominant characteristics (Sommerville, 

1984):

1. It should provide the functionality and operate within the constraints

defined in the software specification.

2. It should be reliable.

3. It should be readily modifiable and extendible.

The first is a very general characteristic which includes many external 

features tha t may be defined in the software specification, such as space and 

time efficiency, and ease of learning and use. The second is the most important 

dynamic characteristic of a software system as software becomes more diverse 

and is used in more and more application areas.

The third characteristic arises directly from the consideration of the 

maintenance costs. The software development activity should be aimed toward 

producing a readily maintainable and readily extendible software system. This
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means tha t the software system must be constructed so that modification and 

extension can be accomplished in a time proportional to the magnitude of the 

changes rather than to the size of the system. This characteristic is critically 

im portant for software systems to survive in an evolving environment. Thus, it 

should be a primary goal in software development. This characteristic leads to 

several im portant issues of software engineering including program structure, 

design techniques and reuse of program components, program readability, and 

program documentation.

Maintainable systems should have a modular structure both in the small, 

to allow modification on the functionality of a specific component, and in the 

large to allow changes in major components as the application domain as well as 

the computer technology evolves. Different design methodologies may lead to 

different definitions of modules. However, the modules in a software system 

should be independent of other modules to a certain extent (i.e., they should be 

loosely connected). Moreover, the interface between modules should be clearly 

defined such tha t the modules in a system can be independently developed and 

tested, unconnected or replaced without side effect, and kept in libraries for re­

use. The readability of programs should take place over writeability because 

programs are read more often than they are written. Documentation should be 

clear, concise, and complete, and should be treated as a part of the software 

system of equal importance to the actual source code.

2.3 Current Issues

It is likely tha t the average size and complexity of future engineering 

software will grow considerably in the coming years because of: (1) increased 

demand for sophisticated user interfaces and graphics processing; and (2) rapid 

development of hardware which makes it possible to develop programs for 

problems which were previously considered infeasible. Thus, the improvement
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of software quality and productivity is becoming increasingly important. This is 

an issue in software engineering research th a t has attracted increasing attention 

during recent years (Wegner, 1984; Barbacci et al., 1985; Prieto-Diaz et al., 

1987; Meyer, 1987, 1988; Tracz, 1987; Burton et al., 1987, Pyster et al., 1988; 

Ellison, 1988).

At present, software development is still largely labor-intensive — 

programmers perform the major activities in the process. Only by becoming 

more technology-intensive can software quality and productivity be improved on 

a large scale. In technology-intensive software development, the computers 

become more im portant actors. Automation in software development can be 

accomplished by using: (1) reusable software components and software tools tha t 

individually address a single area or function; and (2) development environments 

that consist of large collections of reusable components and software tools as 

well as associated programming tools which facilitate software reuse.

The objective of software reusability is to enhance the software 

development process by enabling effective reuse of software components, designs, 

templates, or specifications to substantially increase the fraction of a new system 

that can be derived from prior work. Among different types of software reuse, 

the reuse of software components has the most direct and tangible benefit. 

Software component reuse requires a software design methodology which 

promotes reusability. This has made object-oriented programming a popular 

choice in recent years.

Reusability also requires a rich software development environment in 

which software reuse is systematically supported and is a natural activity. An 

ideal integrated environment should be composed of: (1) a consistent and 

compatible set of components and software tools, and (2) integrated 

programming tools for all phases of system development and operation. The 

consistency of reusable components must be emphasized. The quantity and
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merits of available individual reusable components in an environment are less 

important than the consistency of these components. Consistency means not 

only the ability to communicate with each other, but also the ability to share a 

common set of calling conventions, user-interfaces, and general design 

philosophy (Barbacci et al., 1985). These issues will be discussed further in the 

following chapters.
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CHAPTER 3 SOFTWARE REUSABILITY

Because of the potential benefits of large scale software reuse in software 

development and maintenance, software reusability has attracted increasing 

attention over the past years and is one of the major interests in software 

engineering research and practice (Wegner, 1984; Barbacci, et al., 1985; Prieto- 

Diaz et al., 1987; Meyer, 1987, 1988; Tracz, 1987; Bassett, 1987; Kaiser et al., 

1987; Burton et al., 1987; Lenz et al., 1987; Fischer, 1987; Love, 1988; Pyster et 

al., 1988; Cox, 1988). This chapter presents a brief overview of the issues 

related to software reuse.

3.1 The Concept of Reuse

Wegner (1984) has made an interesting comparison between software 

technology and the technology that fueled the industrial revolution. He points 

out th a t software technology was labor-intensive in its youth and is becoming 

capital-intensive as it matures. Capital-intensive development can be referred to 

also as being technology-intensive. An im portant feature of technology-intensive 

software development is software reuse.

In fact, reusability is a general engineering principle whose importance 

derives from the desire to avoid duplication and to capture commonality among 

inherently similar tasks. Designing software w ithout reusing existing tools 

and/or software components is similar to designing a building without using 

prefabricated structural components and standard member section sizes.

f
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Reuse may be defined as the utilization of previously acquired concepts 

and objects in a new situation. It is a matching process between new and old

situations and may take place at different stages of software development. A

model of a real world object may be reused in different software systems again 

and again. The specification or design of a finite element analysis program may 

be reused for the development of another finite element program that has 

similar functionality with the previous one. The code of a software component 

in a program may be reused in another program without or with only minor 

changes. However, only the reuse of software components has the most tangible 

and direct benefits.

Software components can be reused by

1. being included in a variety of applications,

2. being utilized in successive versions of a given program, or

3. being called repeatedly during program execution.

All of these three forms of reusability reduce the efforts of software 

development. The first two forms motivate the development of reusable 

software components as basic building blocks for various applications. The 

third form motivates the development of generic software tools, such as tools for 

handling the graphical user-interface.

It is a mistake to assume that software component reuse does not pose any 

new design challenges (Fischer, 1987). Rarely is it feasible to decompose an 

existing software system into reusable components th a t can be employed readily 

for constructing other systems. Software components must be specially designed 

for reusability to achieve optimum reuse. The need for reuse has caused an 

evolution of the software life-cycle model and program design process. A 

software environment tha t supports reuse is essential to allow programmers to 

take advantage of previous work. These issues are discussed in the forthcoming.
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3.2 Characteristics of Reusable Components

Reusable software components, or reusable modules, are basic units for 

building applications. A reusable component should consist of two separate 

parts: the specification and the implementation. The specification should consist 

of three major parts: (l) an overview of the component, (2) the definition of the 

component’s interface with its clients (or other software components tha t it can 

communicate with), and (3) test cases for the component. The implementation 

of a component includes the detailed design and code implementation.

According to the information hiding principle of software engineering, the 

details of a component’s implementation should be hidden from the outside 

world. Any changes in the implementation should not affect its specification. 

Users of a component should only need to access the component’s specification 

without referring to its implementation.

The definition of the interface in the specification describes the available 

operations by and only by which clients communicate with the component. 

Both the syntactic interface and the semantic interface have to be defined. The 

syntactic interface specifies compile-time invariants tha t determine how 

components fit together, while the semantic interface specifies execution-time 

invariants which determine what data the component operates on.

The interface should be unified among the components of the same type 

(e.g., components tha t implement different strategies for solution of linear 

simultaneous equations, or components which implement different material 

models in a nonlinear finite element analysis). Only by a unified interface can a 

reusable component be replaced or added to a program without affecting other 

components.

The simplest possible notion of software reuse is the "use-as-is" notion 

(Bassett, 1987). Program development may benefit from fixed, use-as-is 

components. However, it is more often the case tha t a software component is
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needed which is similar to an existing component (Meyer, 1987). Therefore, the 

"same-as-except" notion ("A" is the same as "B" except ....) is a needed 

generalization of the "use-as-is" notion (Bassett, 1987).

In this regard, extendibility, which is defined as the ease with which a 

software component can be modified to reflect changes in its specification, 

should be another im portant characteristic of reusable components. The UNIX 

operating system provides a good example of software extendibility. Existing 

programs in UNIX are treated as independent software components. If one of 

these software components does not meet a specific need, it may not be 

necessary to change the component itself. Either the pipe facility may be used 

to link the component with another component, or specific program code may be 

developed and placed around the component to provide the needed 

functionality.

3.3 Design of Reusable Components

Reusable software components for a certain problem domain can be 

identified and defined by a domain analysis. Abstraction techniques are the 

most powerful tool to perform this analysis. Abstraction arises from a 

recognition of similarities between certain objects, situations, or processes in the 

real world and the decision to concentrate on these similarities and to ignore, for 

the time being, their differences (Wegner, 1984). Many different abstraction 

mechanisms have been proposed as a basis to identify and define software 

components. Each may represent different types of components from which 

programs can be constructed, and each may result in different paradigms or 

methodologies for programming. Two important abstraction techniques are 

functional abstraction and data  abstraction.

Functional and data  abstraction emphasize different aspects of software 

reusability. Functional abstraction emphasizes reusability of functions, and
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functions or subroutines are the basic reusable units. Data abstraction 

emphasizes reusability of types of data objects for various operations tha t may 

be applied to them. Data types or classes of data objects are the basic reusable 

components. Functional abstraction leads to top-down structured programming. 

Data abstraction, incorporated with the information hiding principle, leads to 

object-oriented programming.

3.3.1 Functional Abstraction

Functional abstraction may be specified in terms of input-output relations 

of a component. Every input x determines a unique output }(x). The output 

depends only on the input x and on no other data. A client of the component is 

aware only of the input-output specification and not of the way the function is 

implemented. The specification represents the interface with the client, and the 

implementation is hidden from the client. In this approach, reusable 

components are subroutines.

Building subroutine libraries is a classical technique. Subroutine libraries 

have significant affected the production of mathematical software systems as 

well as software for string manipulation and I/O . Each routine in a library 

implements a  well-defined operation. However, library subroutines are not 

sufficient to achieve a large-scale improvement in software productivity and 

maintenance. An individual subroutine is too small and the effort necessary to 

make many subroutines work together is too large. Small size subroutines are 

more amenable to reuse than large units, since they tend to be relatively simple 

and context-free, but only a small amount of code is then actually reused by 

each subroutine call (Kaiser et al., 1987).

Moreover, in dealing with a complicated problem with many different 

special cases, either a single routine for all special cases or a set of routines, each 

corresponding to a special case, may be developed. A single routine will need
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many parameters, and will probably be constructed using a set of case 

instructions leading to a complex and inefficient implementation. The addition 

of a new case will mean modification and recompilation of the entire module. 

This may introduce new bugs into the system. A set of routines will be large, 

and it will consist of many routines tha t in fact are very similar. The key 

problem is that there is no simple way by this approach to utilize this similarity 

between these routines. Client programmers have to find their way through a 

maze of routines (Meyer, 1987). Also, subroutines are written with all the 

details filled in. Therefore, it is not possible to extend the algorithm 

encapsulated in the subroutine without a proliferation of different versions of the 

code (Kaiser et al., 1987). This results in difficulties in extending an existing 

component.

3.3.2 D ata Abstraction

In data abstraction, the information which should be hidden from the user 

includes the data as well as implementation of the functions that operate on the 

data. D ata abstractions have an internal state tha t "remembers" the effect of 

past operations and allows components to use this state to direct future 

operations. Thus, the output f(x, s) from an operation of a data abstraction 

depends not only the input x, but also the hidden state variable s. A data type 

or an object class is an implementation of a data abstraction. A data type 

defines a common data structure which is shared by data objects of that type, 

and supports operations th a t operate on the data objects. This approach leads 

to object-oriented programming. The reusable components are data types or 

object classes.

The term  "object" is used to denote software components that have a 

hidden state and a  set of operations for transforming the state. Objects package 

together both the functions (called the methods of the object) and the particular
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type of data that the functions are designed to work with (called the properties 

of the object). Objects of a same class share common type of properties and 

have common methods. The definition of the particular data type and the 

implementation of the methods of a class are encapsulated (i.e., hidden) in the 

class body. The methods, which are the only means for manipulating an object 

of th a t class from the outside world, are declared in the specification of the class.

Object-oriented programming has two distinguishing features which 

encourage software reuse:

1. The user of an object class is more clearly separated from the developer. 

Users are not aware of how an object is stored or how an operation on the 

object is implemented. They can only manipulate an object using the 

methods provided by the developer. This ensures tha t the implementation 

of the encapsulated object can be changed without affecting its 

application.

2. In an object-oriented system, a set of object classes can be organized 

hierarchically by the base-derived relationships between object classes and 

the inheritance mechanism between a base class with its derived classes.

A derived class is a  specialization or an extension of its base class. The 

derived class may possess the properties defined in its base class as well as 

additional properties special to  itself. Objects of a derived class may be 

manipulated by the methods defined in the base class as well as those defined in 

the derived class. This inheritance mechanism mirrors the growth of human 

knowledge by building on w hat already exists rather than  by starting from the 

beginning for every software component. Thus, an object class tha t is almost 

like an existing one can be created by simply specifying additional properties 

and methods and reusing properties and methods th a t the new class shares with 

the existing base class. Extendibility of software components is thus facilitated. 

Object-oriented techniques are discussed in more detail in the next chapter.
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3.4 Software Reuse and Life Cycle Models

Software reuse also plays a central role in the evolution of the software 

development life-cycle model. The classical waterfall model has been described 

in Chapter 2. This model was developed in late 1960’s. In this model, the 

software development proceeds through a number of stages: specification, design, 

implementation, validation, and operation and maintenance. However, in spite 

of its success, the waterfall model has some drawbacks (Wegner, 1984). First, it 

is geared to program development by humans rather than by the computer. 

This reflects the fact that the potential of the computer as an active partner in 

program development was not fully understood when the model was established. 

Another im portant drawback is tha t the waterfall model does not provide 

feedback concerning specification and design behavior until late in the 

implementation and validation phases.

The concept of software reuse has motivated a new software development 

life-cycle model called the operation model (Wegner, 1984; Thomas, 1989). 

Rapid prototyping tha t reuses existing software components is central to this 

new approach. The stages in an operational software development life-cycle are: 

executable specification (rapid prototype), refinement, and efficient 

implementation. In such a development, a  display prototype is first developed 

to perform initial user-interface testing. This is followed by the development of 

a full simulation th a t is an executable specification of the final product. The 

executable specification provides early feedback to both the end-user and the 

system designer on the functionality of the intended system. The specification is 

then refined and optimized to build the final product. It is obvious tha t in this 

approach, the existence of a large amount of reusable software components is 

essential for building the prototype as well as the full simulation.

One other software development life-cycle model is the knowledge-based 

model. This model depends also on the existence of a large amount of reusable 

software components in a certain problem domain. Knowledge of the general
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programming process as well as the programming process in a specific problem 

domain is needed to implement this model. This model is based on the 

operation model, and has the potential of increasing software productivity by 

several orders of magnitude (Wegner, 1984). It is a specialization of the artificial 

intelligence technology applied to the domain of program development. This 

model addresses the automation of software development, and the computer 

becomes an active partner in the development.

3.5 Reuse of Components

The object-oriented design process, which is based on utilization of 

reusable software components, is different from the traditional process of top- 

down design and step-wise refinement. An object-oriented design begins with 

the identification and classification of the objects that the application must 

manipulate. The objects or classes of objects identified are then compared with 

the existing objects or classes which have been coded in the existing reusable 

software components to see if the same or similar objects or classes exist.

Existing objects or classes of objects can be used as is, or they can be 

extended using the inheritance mechanism. Extension requires development of 

new software components based on existing ones. Objects or classes which can 

not be found in existing objects are created as new objects or new classes, and 

the corresponding software components must be developed. The newly created 

objects or classes can be kept for future reuse. These objects or classes are then 

combined to form the final system.

This process is not top-down. Rather, it is a combination of top-down and 

bottom-up processes. Top-down design may be most effective for developing 

individual algorithms and routines. However, it is inappropriate at the system 

design level because it promotes one-of-a-kind development rather than the 

development of general purpose reusable software components (Meyer, 1987).
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3.6 Support of Reuse

Optimum software reuse requires a sophisticated software development 

environments. Software development environments have attracted considerable 

attention over the past five years (Barbacci et al., 1985; Bishop, 1986; Burton et 

al., 1987; Fischer, 1987; Rappaport et al., 1988; Ellison, 1988; Cox, 1988). A 

software development environment is a compatible set of tools based on a 

methodology for different phases of system development and operation. It 

supports both technical and management activities (Bishop, 1986). The 

environment in which a software system is developed is of crucial importance to 

the success of a software project since the environment has a great impact upon 

programming efficiency, documentation quality, project management, and 

product quality.

To let users take full advantage of previous work, software environments 

must support software reuse. Software environments must support design 

methods whose main activity is not only generating new programs but also 

maintaining, integrating, modifying, and explaining existing ones (Fischer, 

1987). Software development environments supporting software reuse generally 

should be domain-specific. A domain-specific environment consists of a large 

collection of reusable components for a specific problem domain, and the 

knowledge of the programming process in the domain has to be embedded in the 

programming tools of the environment. Barbacci et al (1985) have given several 

possible characteristics of such a software development environment:

• It should be open and integrated — open so that people other than the 

developers can add components, and integrated so th a t the components 

work together with a uniform external interface and style of doing 

business;

• It should have a common communication medium for integrating diverse 

components into systems;
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• It should be incrementally developed with working interim versions 

available at an early date;

• It should be interactive to shorten the software development process;

• It should be evolvable so tha t tool changes do not make the code of the 

existing applications developed in the environment obsolete;

• It should be learnable and usable with a clean, easy to use, and self- 

documenting user interface.

Burton et al. (1987) have developed a Reusable Software Library (RSL) 

which is an excellent example of a software development environment addressing 

software reuse. The RSL is comprised of the RSL database and four 

subsystems: (l) Library management, (2) User query, (3) Software component 

retrieval and evaluation (Score), and (4) Software Computer-Aided Design 

(SoftCad). The foundation of the RSL is a database which stores the attributes 

of every reusable software component. The library management subsystem 

provides a set of tools to help the RSL librarian and quality-assurance personnel 

manipulate and maintain a software library.

The user query facility provides an interface for users to search for 

components with specific attributes and to generate reports about their 

attributes. Score helps the user select the most appropriate software to reuse by 

identifying components tha t perform the functions requested by the user and 

comparing their attributes to other requirements. SoftCad is a graphical design 

and documentation tool tha t has been integrated with the RSL prototype to aid 

the user in the high-level design of software systems. W ith SoftCad, a designer 

can develop a program architecture design by drawing object-oriented design 

diagrams tha t are interpreted by SoftCad and automatically translated into the 

Ada design description language.

(



www.manaraa.com

43

«
CHAPTER 4 OBJECT-ORIENTED PROGRAMMING

Because of its potential to achieve a high degree of reusability and 

extendibility of software, object-oriented programming has become increasingly 

popular in recent years. Object-oriented programming has been successfully 

applied in areas of graphical user-interface and operating systems, as well as 

many other diverse application areas.

The object-oriented programming paradigm models real world entities in a 

specific application domain directly and naturally as software objects. Object- 

oriented languages support the major features or characteristics of object- 

oriented programming. Several object-oriented languages have been developed 

in the recent years such as Smalltalk (Pinson et al., 1988), C ++  (Stroustrup,

1987), Effiel (Meyer, 1988), and Objective-C (Cox, 1986).

In this chapter, the characteristics of object-oriented programming are 

briefly reviewed first in Section 4.1. The use of this paradigm in the C and C + +  

languages is discussed in Sections 4.2 and 4.3 respectively. The application of 

this methodology in engineering software development is then discussed in 

Section 4.4.

4.1 Characteristics

There are five im portant characteristics of object-oriented programming 

(Pinson et al., 1988; and Thomas, 1989): abstraction, encapsulation, inheritance, 

polymorphism, and composition. These characteristics are discussed below.
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4.1.1 Abstraction

Abstraction forms the foundation of all object-oriented development. The 

intent of an object is to represent a problem domain entity. The concept of 

abstraction deals with how an object represents this representation of the entity 

to other objects. This representation is a simplified description, or a 

specification of the entity tha t emphasizes some of the entity’s details while 

suppressing others. The stronger the abstraction of an object, the more details 

are suppressed.

It is a common practice tha t the first task in the development of an 

application is to decompose it into a set of abstractions which represent the 

entities in the real world tha t the software attempts to simulate. In the 

approach of traditional programming, an abstraction is then implemented as a 

set of variables of data types provided by the implementation language. Thus, 

the original abstractions disappear upon moving from the design phase to the 

implementation phase.

For example, the abstraction of a sparse matrix (such as the stiffness 

matrix in a finite element analysis) is often represented as an array which stores 

the m atrix coefficients, an array which stores the information about the non-zero 

coefficients distribution in the sparse matrix, and several scalar variables which 

store information such as dimension and states of the matrix. Operations on the 

sparse matrix are expressed in terms of operations on these separate variables. 

Stress and strain tensors, as another example, are often represented as a one­

dimensional array. The correspondence of tensor components with the array 

entries is artificially specified, e.g., the array entry s(4)  may represent the tensor 

component s12. This representation has to be understood to manipulate a tensor 

in a program.

In object-oriented programming, the same abstractions may be preserved 

throughout the design and implementation phases. An abstraction may be
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represented explicitly by an object class which mirrors the behavior of the real 

world entity. The definition of the class contains the complete information 

about the abstraction and all the possible operations associated with this 

abstraction. An instance of the abstraction is thus represented as an object of 

the specific class in the code.

Using the same examples as mentioned above, an object class for sparse 

matrices can be defined of which the stiffness matrix is an instance. Operations 

on the stiffness matrix are explicitly expressed in the actual code as operations 

with respect to the stiffness matrix instead of operations on some separate 

variables which are part of the stiffness matrix representation. An object class 

can also be defined to represent tensors. A component of a tensor in the code 

can then be expressed in a similar way as in the mathematical notation, 

regardless the actual representation and storage of the tensor in computer. For 

example, a tensor component s12 can be expressed as s(l, 2). If the class is 

implemented in an object-oriented language, operators can be overloaded with 

the tensor class such th a t code dealing with tensor operations will be more 

expressive. For example, the addition of two tensors ay +  by can be coded as 

a + b.

The benefits of preserving abstractions in software development are 

obvious:

1. The code is more abstract, expressive, and understandable to non­

developers because abstractions of real world entities are represented and 

manipulated explicitly in the code;

2. The software component which contains the implementation of the object 

classes representing abstractions will be more reusable because the 

functionalities of software in a  specific domain may not be the same, but 

the categories of abstractions in the same domain are more or less the 

same;
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3. The component will be more easily reused due to its high coherent nature.

The decomposition of an application into objects based on the abstraction 

principle proceeds in the following manner:

• Identification of the object classes and their properties;

• Identification of the operations performed by and required of each class;

• Establishing the relationships between object classes by inheritance and

composition mechanisms;

• Establishing the interface of each object class.

However, following the steps listed above is not an automatic procedure. It 

requires a great deal of knowledge about the application domain and good 

understanding of the particular application.

4.1.2 Encapsulation

Encapsulation is the technical name for information hiding. The 

information hiding principle states th a t the implementation details of an object 

class should be kept secret from other classes. Objects are encapsulations of 

abstractions (Pinson et al., 1988). They encapsulate a set of methods and 

properties which are operated on by the set of operations.

Encapsulation together with abstraction separates the representation of an 

object class from its implementation details. Thus, it leads to two views of an 

object class: the outside view and the inside view. The outside view is the view 

by the users of the class. It captures the abstract or external behavior of objects 

of the class. By seeing the outside view only, one can use an object class 

without knowing how the class is implemented. The inside view is the view by 

the implementer. It focuses on the implementation of the behavior which is
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encapsulated in the object class. The benefits of separating the two views is 

obvious. The implementation of the class can be modified or replaced without 

affecting the outside view of the class, and therefore, without affecting other 

classes which interact with the objects of that class.

Consider the same sparse matrix example again. The implementation 

details of the sparse matrix class, such as the storage architecture of the matrix 

elements, are hidden from its users. The class can be used to create sparse 

matrix objects and to operate on these objects without knowing whether the 

class implements the active column storage scheme or the constant band scheme. 

Thus the class’ use will not be affected if the storage scheme of the class is 

changed.

4.1.3 Polymorphism

One im portant goal of abstraction in decomposing an application system is 

to control the complexity. Controlling of complexity often leads to a hierarchy 

of abstractions. An abstraction in a lower level provides more detailed 

explanation for the behavior th a t appears in a higher level (Shaw, 1987). Each 

abstraction corresponds to a class of objects in object-oriented programming. 

Polymorphism and inheritance (which is discussed in the next section) are two 

mechanisms of object-oriented programming tha t utilize the commonalities or 

similarities among classes of objects.

Polymorphism is defined as the ability of different objects to respond 

differently to the same messages. Here, the point is tha t if different classes of 

objects respond to the same messages, they can be treated identically, regardless 

of how they respond to these messages. Each class of objects should respond to 

the same messages in ways appropriate to the kind of object class tha t it is. The 

details of how an object class responds to messages are hidden from the outside 

world.



www.manaraa.com

48

From another viewpoint, polymorphism also states that a standard 

interface should be defined for object classes which are similar or which are at 

the same level of an abstraction hierarchy. Thus, objects of similar classes can 

be treated identically. As a result, , it becomes easy to: (l) insert a new class of 

objects to a system if the new class shares the same interface as the existing 

classes; or (2) replace a class by another which shares the same interface as the 

one to be replaced. Polymorphism leads to a style of programming referred to 

as differential programming or programming by modification (Thomas, 1989).

For example, several classes for matrix manipulation are developed in the 

C ++  language in the present work (Zhang et al., 1990c). Each class represents a 

type of matrix which has a certain characteristic such as symmetry or 

diagonalness. The operation function product, which multiplies a matrix by a 

scalar is defined in different matrix classes with the same function specification. 

Thus, such an operation can be coded identically in an application by calling the 

function product through the m atrix object being operated on, regardless of the 

actual class of the matrix object. As another example, a standard interface may 

be defined for several sparse m atrix classes. Each of these classes implements a 

specific sparse matrix storage scheme. Because of the standard interface, the 

sparse scheme used in an application can be changed without affecting the other 

components in the application.

4.1.4 Inheritance

The other characteristic of object-oriented programming tha t supports 

differential programming is inheritance. Inheritance is the ability to define a 

new object class th a t is just like an old one except for a few minor differences. 

A class is called the base class of any class which is immediately under it in the 

class hierarchy. A class is called a derived class of its base class. An object class 

inherits the properties and methods from its base class as well as from all of its



www.manaraa.com

49

ancestor classes (i.e., all of the classes which are above it in the class hierarchy). 

Because a derived class is a more refined specialization of the base class, a 

derived class can define new properties and methods for its objects. Thus, an 

object of a class can be operated on by the methods defined in all its ancestor 

classes as well as the methods defined in its own class. The code implemented 

for a class is reused by its derived classes. This is the most important 

characteristic that distinguishes object-oriented programming from other 

programming paradigms.

Consider the matrix classes mentioned previously. Different matrix 

abstractions such as a symmetric matrix, a diagonal matrix, and a lower-triangle 

matrix are specializations of a high-level abstraction, a general matrix. These 

abstractions are represented respectively by different matrix classes such as the 

class Matrix for general matrix abstraction, SMatrix for symmetric matrix 

abstraction, DMatrix for diagonal matrix abstraction, etc. The generality and 

speciality between these matrix abstractions is utilized in the matrix classes by 

defining the class Matrix as the base class for the other matrix classes. The 

declaration of the Matrix class contains the common information for matrix 

representation such as the dimension of the matrices. Operations are also 

defined in the Matrix class which perform the operations applicable to objects of 

any specific matrix class. A derived class of Matrix such as the SMatrix or 

DMatrix classes only implements operations where advantage can be taken of 

the characteristics of the special m atrix abstraction it represents.

Class inheritance may be used not only for managing hierarchical 

relationships among object classes, but also for system evolution and 

incremental modification. A new class of objects can be easily created from an 

object class which is similar to the new class by adding more specific details. 

The use of inheritance to specify incremental change flexibly is invaluable in 

software engineering (Wegner, 1989).
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Both the characteristics of polymorphism and inheritance are based on 

commonalities or generalities among classes of objects. Finding commonality 

among objects in a system is not a trivial process. How much commonality can 

be exploited depends on how the system is designed. Commonality or generality 

must be actively sought when the system is designed, both by designing classes 

specifically a3 building blocks for other classes and by examining classes to see if 

they have similarities that can be exploited in a common base class (Stroustrup, 

1988a).

It is clear that not everything can be organized into a single inheritance 

tree. Single-inheritance systems require that classes are organized into a tree 

structure. This can sometimes result in deep inheritance structure tha t can be 

awkward to use (Thomas, 1989). An alternative is based on multiple inheritance 

which is supported in several object-oriented languages (C ++ supports this).

4.1.5 Composition

Many entities in the real world are often complicated. A complex entity 

may contain many entities of other types. This fact is simulated in object- 

oriented programming by the composition mechanism. The composition 

mechanism states tha t a complex object may be assembled from objects of other 

classes. Thus, the code implemented in the classes of the component objects can 

be reused to accomplish the functionality of the complex class. In this way, 

composition is another key to reusability (Thomas, 1989).

For example, exception handling is an important feature for many object 

classes. When an exception occurs, an object class usually should report the 

exception by delivering an error message and sending a signal to the application 

to let the application make the final decision on what to do with the exception. 

Such a functionality is not hard to implement, but it is cumbersome to include 

the same code for exception handling in every object class. Thus, a  class can be
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developed specifically for exception handling. An objects of this class can then 

be used in another class as a component of that class for exception handling.

It should be noted tha t inheritance is a mechanism to create object classes 

that share properties and methods with similar classes, while composition is a 

different mechanism that allows assembling of composite objects. Thus, in an 

object-oriented system, there are often two hierarchical structures, the 

inheritance hierarchy, and the composition hierarchy. It is easy to confuse the 

two hierarchies. The basic difference between the two is that inheritance is 

related to the relationships between the object classes, while composition is the 

relationship between the objects, or the instances of different classes. An object 

of a composite object class is built using instances of other classes.

4.2 Programming in the C Language

Object-oriented programming (OOP) is simply a paradigm or a style. It 

can be performed with any general-purpose programming language to a certain 

degree. Nevertheless, as discussed by Stroustrup (1988a), there is an important 

distinction between a language which supports OOP and one which merely 

enables its use. A language supports the OOP paradigm if it provides facilities 

th a t make the use of OOP convenient, safe, and efficient. A language does not 

support OOP if it takes exceptional effort or skill to write programs in which the 

paradigm is utilized. In such a case, the language merely enables the use of the 

OOP paradigm.

Stroustrup also explains th a t support for OOP paradigm comes not only in 

the obvious form of language facilities, but also in the more subtle forms of 

compile time and run time checks for unintentional deviations from the 

paradigm (1988a). Thus, if a language is employed which supports OOP, 

artificial strict rules on low-level programming details are unnecessary because 

these rules will be enforced by the compiler.
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It would then appear th a t use of an object-oriented language is desirable 

for object-oriented software development. However, performing OOP with a 

classical procedural language may still be a practical and viable approach for 

many organizations (Coad et al., 1990). This section discusses techniques for 

OOP in the C language. The C language is one of the most widely used 

languages in the world today (Kernighan, et al., 1988), and it is the major 

language for many software development organizations. In addition to its key 

strengths of flexibility, efficiency, availability, and portability, the C language 

also provides relatively rich syntactic features th a t make implementation of 

OOP paradigm easier to accomplish than with other procedural languages such 

as FORTRAN. However, since C does not support OOP, programmers must 

follow strict coding disciplines to code object-oriented features explicitly.

Although the use of C for object-oriented software development is 

debatable, there are some reasons for following this approach a t the present 

|  time:

• Most object-oriented languages are still in their youth. C is a mature 

language and it is more readily available.

• C has a more mature and more readily available programming 

environment. Many tools are available in UNIX and other operating 

systems for programming in C. In some cases, these tools may not work 

well with object-oriented languages such as C++.

In the present research, both C and C ++ are used for the development of 

reusable components. The use of the C language in the present research follows 

the reasons listed above, and also a C ++  compiler was not yet available until 

late stage of the present work. Moreover, the author feels tha t study the 

techniques of performing OOP in C is helpful to gain a more clear 

understanding of the object-oriented paradigm.

I
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There are two major issues involved with object-oriented programming in 

C: representation of objects and implementation of message passing. Several 

techniques concerning these two issues have been discussed by Linowes (1988), 

Bailey (1989), and Meyer (1988). In the following sub-sections, these issues are 

discussed with regard to these techniques as well as the approach used in the 

present work for the development of GUIDES. A general utility for object- 

oriented programming in C, which is named CLOOP, is then presented.

4.2.1 Representation of Object Classes

4.2.1.1 Structure Types for Object Classes

To represent an object class in the C language, it is a common practice to 

define a data structure which contains the definition of the properties of the 

class. Each field in the structure corresponds to an item of the properties. The 

data structure can then be further defined as a structure type by the typedef 

instruction. Thus, an object of the class can be declared and manipulated as a 

whole in the code. The definition of the structure type may be placed in a 

header file. This header file should be included in the C source file which 

contains the implementation of this class and, if necessary, in the source files 

which contain the implementation of the derived classes of this class. Because a 

C file forms a boundary between different code units in a program, this structure 

type is unknown to the code units contained in other files where the header file 

is not included. Thus, encapsulation of object classes can be accomplished.

However, the structure type of the class has to be known by all the classes 

which communicate with this class. To this end, this header file has to be 

included in the source files containing implementations of other classes. In doing 

so, the possibility of undisciplined access to the fields in the class’ data  structure 

is risked. An alternative way to accomplish communication between classes is to 

introduce a general type of pointer to objects which bypasses the protection
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boundary of source files. An object sends a message to another object via a 

pointer of general type. The pointer is then casted as a pointer to the class 

structure type in the methods of the class of the object which receives the 

message. However, it is not possible to hide some of the fields while exposing 

the others. All the fields of a class’ data structure can only be either exposed or 

hidden together.

4.2.1.2 Use of Nested File Inclusion for Property Inheritance

A nested file inclusion mechanism is suggested by Linowes (1988) for 

implementation of property inheritance. An object class is implemented in two 

source files: class.c and class.p, where class is the name of a class. The .c file 

contains the methods and message-handier of a class, and the .p file contains 

definitions of the properties of the class. The .p file of a class includes the .p file 

of its base class, and is included in the definition of the structure type of the 

class. The class’ structure type is contained in the .c file of the class. Figure 4.1 

illustrates this approach where a class rectangle is derived from a class shape 

which is in turn derived from a class common. By use of the nested file 

inclusion, a derived class possesses all the properties of its ancestor classes. 

However, a base class exposes the definition of its data  structure to all of its 

derived classes. Strict programming discipline is needed here to not permit a 

class to access the properties of its ancestor classes.

4.2.1.3 Use of Linked Objects for Property Inheritance

The mechanism used in the implementation of property inheritance in 

GUIDES (Zhang et al., 1990b) is not satisfactory either. In this design, an 

object of a derived class is represented by several objects in memory. These
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t
com m on ,  p

(defin it ion  o f  properties o f  the c o m m o n  class)

shape.p

#include "common.p"
(de f in i t ion  o f  properties o f  the shape class)

rectangle.p

#include "shape.p"
(de fin ition  o f  properties o f  the rectangle class)

rectangle.c

typedef struct {
#  include "rectangle.p"
} Rectangle-Object
( im p lem e n ta t io n  details o f  the rectangle class)

Figure 4.1 Linowes’ approach for property inheritance (from Linowes, 1988)

I, objects are linked together by pointers. Figure 4.2 illustrates the memory

organization by this mechanism for an object of a class B, which is derived from

a class A which is in turn  derived from the Basic class.

The Basic class is the root of the class inheritance hierarchy of GUIDES. 

The data structure of the Basic class contains properties which are common to 

all classes such as the class identifier of an object. It also contains a field, 

represented by the name p-derived, which references an instance of a derived 

class’ data structure. The type of this field is Pointer (i.e., a general pointer 

type) to bypass the protection boundary of source files as described previously. 

A class derived from the Basic class contains properties which are specific to the 

derived class. It may also contain a field, again represented by the name 

pL.derived which references to an instance of any class’ data structure that is 

derived from this class. Any object in the system can then be represented as a 

Basic class type. The same problem is experienced by this approach as in 

af Linowes’ approach. The definition of the structure type of a class is exposed to

common properties

shape properties

rectangle properties

a rectangle object
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t

P ro p e r tie s  o f  

class B

P ro p e r tie s  o f 

class A

P ro p e r tie s  o f  

class Basic

p -  derived »

Figure 4.2 GUIDES’ approach for property inheritance

the classes derived from it. However, this approach avoids the possibility of 

unintentionally accessing a field in the data structure of an ancestor class from a 

derived class.

To "support" object-oriented programming in C, it is necessary to establish 

a more general mechanism for encapsulation and property inheritance. The 

mechanism should be flexible such tha t a programmer can choose either to 

expose or to hide the definition of the structure type of a class to its derived 

classes as desired. Such a mechanism is implemented in CLOOP and is 

discussed in Section 4.2.3.

4.2.2 Implementation of Message Passing

Object-oriented programming is largely a style implemented by sending 

messages to objects. The operation functions of the receiver objects are invoked 

by the messages. This is the key aspect for object-oriented programming, and it 

needs to be coded explicitly in C.
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Polymorphism requires that an object should be able to send a message to 

another object without necessarily knowing the class of that object or the 

method which will be invoked. For example, an object should be able to send a 

message Draw to another object without knowing whether the object is a circle, 

a rectangle, or a curve, and without knowing the name of the method which will 

be invoked to perform the operation. In the case of method inheritance, sending 

a message to an object may invoke a method which is not implemented by the 

class of that object. Instead, the method may be implemented by one of its 

ancestor classes. Because message passing is the major means of communication 

between objects, the efficiency of its implementation is essential to the overall 

run-time performance of an object-oriented system.

Here, the problem is how to find efficiently a pointer to an appropriate 

operation function for a given object and message pair. The exact class type of 

the object may only be known a t run time. Several different approaches have

I been suggested (Linowes, 1988; Meyer, 1988; Bailey, 1989; Zhang et al., 1990b)
\,

4.2.2.1 Use of the Switch Statement

In the approach suggested by Linowes (1988), each object class implements 

its own message-handier function. The handler uses a switch statem ent with 

cases for each message recognized by the class. It calls the corresponding 

operation functions upon receiving messages. These operation functions or 

methods of the class are defined as static and are located in the same source file 

as the message-handier. To implement polymorphism, the first field in the data 

structure of every object class is a pointer to the message-handier of tha t class. 

This field is defined in the file eommon.p of the class common as shown in 

Figure 4.1, and is inherited by classes derived from it.

(
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A general message-passing function Send, which is a macro function, is 

then defined which takes advantage of the fact th a t the first field in the data 

structure of every object is the message-handier of its class. Figure 4.3 shows 

the implementation of this macro function. To send a message to an object, the 

Send function simply accesses the first field in the data structure of the object. 

To accomplish method inheritance, if the message-handier of a class does not 

recognize a message, it forwards the message to its base class. Thus, the method 

corresponding to a given object and message pair is dynamically searched for in 

the class inheritance tree upward from the object which receives the message.

Linowes’s approach seems impractical for implementation of object 

systems which have many inheritance levels. Too much work will be involved in 

searching for a method. Adding inheritance levels to a system will make it 

slower. Inheritance is one of the main object-oriented techniques for reusability. 

Although some overhead is inevitable, a situation of direct conflict between 

reusability and efficiency is not acceptable (Meyer, 1988).

A n E x c e rp t f ro m  O O P C .h

typedef int (*Functionp) (); 
typedef struct {

Functionp dispatch;
} “Object;
#define Send(obj, msg, param, result) ((*(obj->dispatch)) (obj, msg, param, result))

Figure 4.3 Message-passing function Send (from Linowes, 1988)

c
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4.2.2.2 Use of Self-Sufficient Objects

There is another approach which has been suggested by Bailey (1989) and 

discussed by Meyer (1988). An object can be viewed as carrying along at run­

time the operation functions that are applicable to it. This view leads to an 

approach in which the pointers to methods are included in the data structure of 

an object class. Objects defined in such a way are called "self-sufficient" (Meyer,

1988). Figure 4.4 shows the definition of a self-sufficient class REAL—STACK. 

The first two fields in the structure are the properties, and the others are 

pointers to operation functions of this class. These function pointers should be 

initialized so that they will point to appropriate functions at the creation time of 

an instance of this structure. This approach may work well for small scale 

applications which involve only a small number of objects. However, it implies 

th a t every instance of every class physically contains references to all functions 

th a t may applied to it. Thus, this approach is prohibitive for large scale 

{ applications because of the space overhead.

typedef struct { 
int last;
float impl[MAXSIZE]; 
void (*pop)(); 
void (*push)(); 
void (*top)();
BOOL (*empty)();

} REAL-STACK;

Figure 4.4 The definition of a self-sufficient object class (from Meyer, 1988)

(
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4.2.2.3 Use of Method-Dispatch Tables

It should noted tha t the methods of a class are common to all instances of 

the class. Another structure for a class can be defined which contains pointers 

to all the operation functions of that class. This structure is called the "class 

descriptor" or "method-dispatch table". Only one reference in the structure of a 

class is necessary for reference to the method-dispatch table. This idea is the 

basis for the implementation of object-oriented programming languages which 

use C as the target language (Meyer, 1988).

This approach is used in the implementation of GUIDES (Zhang et al., 

1990b). The method-dispatch table of a class is implemented as an array of 

pointers to methods of tha t class. These methods are defined as static, and are 

located in the same source file as the method-dispatch table. Messages are 

predefined integer constants, and used as indices of the corresponding method in 

the array. Pointers to  method-dispatch tables of every object class in GUIDES 

are stored in an array which is called the "class-dispatch table". Class 

identifiers, which are also predefined constants, are used as the indices of these 

method-dispatch tables in the array. The data structure of the Basic class 

contains a class identifier. Thus, a message-passing function can find the 

operation function efficiently for a given object and message pair according to 

the identifier carried by the object and the message.

Several message-passing functions are used in the implementation of 

GUIDES, and each message-passing function corresponds to a specific message. 

To accomplish method inheritance, a message-passing function makes calls to 

appropriate methods either in a forward order (it calls the methods in the base 

class first, and then the methods in the derived class), or in a backward order (it 

calls the methods in the derived class first, and then the methods in the base 

class). If a class does not implement a method corresponding to a message, only 

the methods in its ancestor classes will be executed. Figure 4.5 shows a GUIDES
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/*
* GSi_CreateAgent - create a guides agent
* calling order: basic class, composite class, specific agent class
7

Gs_Agent
GSi_CreateAgent(resources, reso_count)
Gs-ResoList resources;
Poslnt reso_count;
{

auto Poslnt reso_name;
auto Pointer reso_value;
auto Gs_Agent agent;
auto Gs_AgentFunction funct;

/* calling the basic class first */
if (nilAG - (agent =  sbpfMainTable[GSA_BASIC][GSO_CREATE]

(agent, resources, reso-count)))
return nilAG;

/* calling the composite class */ 
if (IS_COMPOSITE_AGENT(agent)) {

if (nilAG = =  sbpfMainTable[GSA_COMPOSITE][GSO_CREATE]
(agent, resources, reso_count))

return nilAG;
}

/* finally calling the specific agent class */
funct =  sbpfMainTable[agent->clas8][GSO_CREATE];
return (nilAF = =  funct) ? nilAG : (*funct)(agent, resources, reso_count);

Figure 4.5 A Message passing function of GUIDES
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message-passing function, GSi—AgentCreate, for the message CREATE.

The weakness of the implementation of message-passing in GUIDES is lack 

of flexibility:

1. It is hard to add another level to the inheritance hierarchy (currently there 

are three levels). This would involve changes in all message passing 

functions.

2. A class can not overwrite the methods defined in its ancestor classes. This 

limits the number of choices in design.

3. A class has to know every message to build its method dispatch table, even 

if a message has nothing to do with a class. This implies tha t any change 

in the definition of messages involves changes in the code of all classes.

These problems are solved in CLOOP.

4.2.3 CLOOP: A General Utility for OOP in C

The purpose of CLOOP is to provide systematic support and guidance for 

object-oriented programming in C. CLOOP consists of 7 functions, and is quite 

small in terms of its number of lines-of-code. This section discusses briefly the 

basic ideas of CLOOP. A detailed explanation of this utility may be found in 

(Zhang et al., 1990a). This utility was developed in the late stages of the 

GUIDES development, and was used in the development of the PlotManager of 

GUIDES.
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4.2.3.1 Representation of Objects

Following common conventions in C programming, the implementation of 

an object class usually consists of two files, a class.h file which contains the 

definition of the structure type of the class, and a class.c file which contains the 

implementation of the methods of the class. The designation class stands for 

the name of the class. A  class can only recognize the structure type of another 

class by including the class.h file of that class in its implementation.

To accomplish message-passing and property inheritance, an object is 

represented in CLOOP as a pointer to a data structure, ObjectRec, or as a 

variable of type Object as shown in Figure 4.6. The field class in the ObjectRec 

data structure is the class identifier of an object. Each class has a unique 

identifier. The field base is of type Object and refers to an object of the base 

class if the object is of a derived class, property is a pointer to the class 

structure type of the object (note that Pointer is the general pointer type as 

mentioned previously). In the methods of a certain class where the structure 

type is known, property can be casted as a pointer to the class’ structure type to 

access the fields in the da ta  structure.

An Excerpt from d oop .h

typedef struct -ObjectRec {
int class; r class identifier 7
struct -ObjectRec ‘ base; r base class object 7
Pointer property; /* its own property 7

} ObjectRec, ‘Object;

Figure 4.6 D ata structure of a general object class in CLOOP
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In the case of inheritance, an object of a derived class is physically 

represented by several objects in memory. Each of these objects corresponds to 

a class in the class hierarchy above the class of the object, and these objects are 

linked together by the pointer base. Figure 4.7 shows the memory organization 

of an object of class C, which is derived from class B. Class B  is in turn derived 

from class A.

property of 
class C

property of 
class B

property of 
class A

id of class A

p ro p e r ty  <►
b ase

p ro p e r ty  »
b ase

4  base
id of class B

p ro p e r ty  »

Class Derivation

Class A

Class C

Class B

Figure 4.7 Memory organization of an object of a derived class, class C

It is clear th a t in this representation of objects, both encapsulation and 

property inheritance are accomplished without any conflict. The structure type 

of a class is hidden by default from other classes, including its derived classes. 

However, if it is desired, the class.h file of a class can be included in the 

implementation of its derived classes in order to access the properties of that 

class directly.
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4.2.3.2 Implementation of Message-Passing

In CLOOP, messages are represented by message identifiers which are 

positive integers. Identifiers of a set of messages for a class or for a group of 

classes are numbered continuously starting from zero.

Object classes which respond to the same set of messages are grouped as a 

sub-system. Classes in the same sub-system are usually in the same level of an 

abstraction hierarchy and respond to the same set of messages. For example, 

different element types in a finite element analysis program can be grouped in a 

sub-system. There are usually several sub-systems in an object-oriented 

application. CLOOP can handle more than one sub-system.

To accomplish polymorphism, a method of a class can only be invoked via 

the method-dispatch table of that class. Methods of a class are usually 

implemented as static functions in the class.c file. W ith CLOOP, a method 

should be defined as a function returning a Pointer. A general form of a 

method is shown in Figure 4.8, where message is the message identifier; receiver 

is the object which receives the message; and paraml and param2 are the 

parameters associated with the message. Because the two parameters are of 

type Pointer, any type of data can be carried along with them. The actual 

types of the parameters are determined uniquely by the associated message.

CLOOP holds the method-dispatch tables for every class. Functions are 

provided to build the method-dispatch table of a class. Each class needs to 

register itself as well as its methods to CLOOP. Also, it needs to implement a 

"method-registration function" for registering its methods to CLOOP. In this 

function, if the class is a derived one, the method-registration function of its 

base class is called first to register the methods implemented by the base class to 

its method-dispatch table. It then registers the derived class’ methods to the 

table. Thus, a class can inherit the methods from its ancestor classes, or it can 

overwrite these methods by its own methods.
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t
static Pointer
aMethod(receiver, message, paraml, param2) 
Object object;
Message message;
Pointer paraml, param2;
{

(im p lem en ta tio n  o f  the m ethod)
}

Figure 4.8 General form of a method

Figure 4.9 illustrates the method-dispatch table of a class C which is 

derived from a class B  and which is in turn derived from a class A. The class C 

only implements 3 of the 8 methods which respond to the messages tha t it 

recognizes. It inherits the other 5 methods from its ancestor classes, class B  and 

class A. The methods corresponding to the message 0 and 1 implemented by 

v class C overwrite the methods corresponding to the same messages implemented

by class A and B  during the process of building the method-dispatch table.

CLOOP also holds the class-dispatch table for an application. The class- 

dispatch table is implemented as an array where each entry is a pointer to the 

method-dispatch table of a  class. Identifiers of classes are used as indices of 

these pointers to method-dispatch tables. Functions are provided to build the 

class-dispatch table.

For a  large scale application, the number of classes involved may be high.

It is impractical to implement class identifiers as predefined integer constants,

especially in a case where object classes are maintained in an object library. 

With CLOOP, class identifiers can be implemented as integer variables. 

CLOOP assigns an integer number as the first identifier for the classes in a sub­

system when the sub-system is initialized. Figure 4.10 illustrates the memory 

/  organization of the class-dispatch table and method-dispatch tables for an
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m ethods im plemented  
by class A

method for message 0
method for message 1
method for message 2
method for message 3
method for message 4

m ethods im plemented  
by class B

method for message 0
method for message 1
method for message 4

-----------  /

method for message 6
method for message 7

m ethods im plem ented  
by class C

method for message 0
method for message 1 
method for message 5

Method-Dispatch Table for Class C

method for message 0 from class C

method for message 1 from class C

method for message 2 from class A

method for message 3 from class A

method for message 4 from class B

method for message 5 from class C

method for message 6 from class B

method for message 7 from class B

Figure 4.9 Method-dispatch table for a derived class, Class C

(
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M eth o d -D isp a tc h  T a b le s

C
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> .......
>.......
> ..............
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C la ss -D isp a tc h  T a b le
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n >

i i  i i i

I T I method records

Class 0 

Class 1
 ------------  sub-system 0

Class 2
Class 3
Class 4 

Class 5 
Class 6
Class 7 

Class 8 

Class 9 
Class 10

sub-system 1

sub-system 2

Figure 4.10 Class-dispatch table for an application

|  application.

As discussed previously, the efficiency of finding a pointer to an 

appropriate function for a given object and message pair is essential. In 

CLOOP, this task is performed by a function named SendMessageTo. 

SendMessageTo requires four parameters for the methods of any class, as 

described previously. An abstracted representation of SendMessageTo is shown 

in Figure 4.11. The name of this function is mnemonic in tha t the following call 

to the function

SendMessageTo(curve, DRAW, ....) 

can be read as "send message to the curve with the message DRAW ....".

For a given receiver and message pair, SendMessageTo first obtains the 

method record from the class-dispatch table according to the class identifier 

carried by the receiver and the message. If the method record is empty, which
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Pointer
SendMessageTo(receiver, message, paraml, param2)
Object receiver;
Message message;
Pointer paraml;
Pointer param2;
{

auto ObjectMethod method; 
auto Object object-tmp;

#ifdef DEBUG
( error cheeking)

#endif DEBUG
if (nilOM = =  (method =  ClassDispatchTable[receiver->class][message])) 

return nilP; 
object-tmp =  receiver; 
if (object_tmp->class !=  method->class_id)

object-tmp =  FindBaseObject(object_tmp, method->class_id); 
return method->method_func(object_tmp, message, paraml, param2);

Figure 4.11 An abstracted representation of SendMessageTo

{
V

means the class of the receiver does not have a method corresponding to the 

message, SendMessageTo will return null.

If the method record is not empty, SendMessageTo then checks if the 

method is implemented by the class of the receiver. If it is not, it assumes that 

the method is implemented by a base class of the receiver. It then calls the 

function FindBaseObjeet of CLOOP to find the base object for which the 

method is implemented. The method is finally called with the receiver or the 

base object as the first parameter, and the other three parameters are the same 

as the parameters passed to SendMessageTo.

This implementation is efficient because:

1. It finds whether the class of the receiver has a method corresponding to 

the message in one step;

c
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2. If the method is implemented by a base class of the receiver, it needs at 

most m steps (where m is the number of ancestor classes of the receiver) to 

find the base object from the receiver by using the field base in the 

ObjectRec data structure (Figure 4.6). Each step consists of a structure 

selection operation and an integer equality operation.

W ith CLOOP, the implementation of an object-oriented system in C is 

more easily accomplished. In summary, the following aspects are the essential 

features of the CLOOP package:

1. The primary features of object-oriented programming are successfully 

supported by CLOOP; these include abstraction, encapsulation, 

polymorphism, and inheritance.

2. Although the level of class inheritance is not limited, only single-path 

inheritance is supported a t present by CLOOP. T hat is, classes are 

organized in inheritance trees instead of inheritance graphs. W ith minor 

modification, support for multiple-inheritance can also be achieved.

3. The memory overhead is 8 bytes per object in the current implementation 

of CLOOP. This is the same as in the implementation of the Eiffel 

language (Meyer, 1988, p.344). Thus, if memory space is a problem for an 

application, the use of a large number of small objects should be avoided. 

Memory overhead due to the method- and class-dispatch tables is usually 

negligible.

4. CLOOP implements dynamic binding by using the class- and method- 

dispatch tables. Therefore, the method invoked by sending a message to a 

dynamically created object can only be determined a t run time.
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4.3 Programming in the C ++  Language

The C ++  language is a superset of the C language. It improves on C 

through its systematic support for object-oriented programming. It is a strong- 

typed language, and thus also improves on C through its type safety. It 

compensates for C’s weaknesses without compromising C’s strengths. The C ++ 

language is distinguishable from other object-oriented languages such as 

Smalltalk by a variety of factors. Among these factors are: (1) emphasis on 

program structure, (2) flexibility of encapsulation mechanisms, (3) run-time 

efficiency, and (4) portability (Stroustrup, 1088b). Currently it is being used for 

large-scale software development in companies such as Apple, Apollo, AT&T, 

and Sun. It has been applied to many branches of programming, including 

CAD, database management, graphics, and scientific programming. The 

support of object-oriented programming by the C + +  language is summarized in 

this section. Use of C + +  in the present work is described in PART THREE of 

this thesis.

4.3.1 Support of Abstraction and Encapsulation

The properties of a class are called member variables, and the methods are 

called member functions in C ++. One goal of the C + +  language is to make the 

manipulation of variables (objects) of user-defined abstract types as convenient 

and efficient as possible. To this end, methods can be defined for a class to 

properly create, initialize, and destroy its objects. Also, methods of a class can 

also be defined to convert objects of other classes to objects of that class. This 

is called user-defined coercion. Furthermore, operators can be redefined for a 

class such th a t objects of th a t class can be operated on by these operators 

directly in coding, e.g., such th a t a matrix multiplication can be written as 

C =  A * B. This is called operator overloading.
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Function names (including names of member functions) can also be 

overloaded, i.e., more than one function may share a single name in the same 

scope. These functions are distinguished from each other by their parameter 

lists which are referred to as their signatures. When the function name is used, 

the correct function is selected from these functions according to the actual 

parameters passed to the function and/or the type of the object through which 

the function is invoked. This feature makes the development of standard 

interfaces among different classes possible.

Manipulations on an object of a certain class usually can only be done 

through calls to the member or friend functions which may contain only a few 

lines of code. To accomplish encapsulation without sacrificing run-time 

efficiency, C ++  allows a function (which can be member or friend function) to 

be declared as inline. Each call of an inline function is replaced by the copy of 

the entire function, much like macro function substitution by the C 

preprocessor. This mechanism eliminates the overhead of calling a function, and 

makes encapsulation practical.

The feature of parameterized types or parameterized classes is also 

supported by the C + +  language even though this feature is not supported as 

well as it should be in the current release of C + +  (release 2.0). A parameterized 

class is especially useful for the implementation of general data structures such 

as arrays, linked-lists, stacks, and queues. A parameterized class is implemented 

independently of the actual data type of the contents stored by the data 

structure. For example, a parameterized array class implements operations 

common to arrays of any element type. The parameterized class can be used to 

create arrays of integers, arrays of floats, or arrays of any user-defined type.

Finally, in the C + +  language, the external specification of a class is 

naturally separated from the implementation. The declaration of a class is its 

external specification, and it is usually provided in the header file of the class by
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C ++  convention. The declaration of a class contains the declaration of member 

variables of the class and the prototyping of member functions. The prototype 

of a function is a template of the function which the C++ compiler uses to 

ensure that proper arguments are passed when the function is called. The 

information contained in the class declaration is all th a t the clients of the class 

need to know to communicate with or use objects of the class. The header file 

of a class must be included by the code of its clients such that the C ++ compiler 

will be able to detect any incorrect calls to functions of tha t class.

4.3.2 Support of Inheritance and Polymorphism

The C ++ language allows hierarchically organized classes to be defined to 

represent a hierarchy of abstractions. The inheritance features of OOP are fully 

supported in C++. Polymorphism is supported partly by function name 

overloading and operator overloading, and partly and more importantly by the 

mechanism of virtual functions. A member function in a base class can be 

declared as a virtual function. A virtual function is one tha t can be overridden 

by a derived class’s member function which has the exact same type and same 

parameter list as specified in the virtual function. This mechanism is im portant 

in the implementation of class inheritance. An object of a derived class can be 

treated as an object of its base class in the C ++  code. However, invoking a 

virtual function through an object of a derived class actually results in the 

function defined in the derived class being called even if the object is treated as 

an object of the base class.

The C ++  language also supports abstract classes. An abstract class is one 

tha t is designed to provide the definitions of properties and methods for its 

derived classes to inherit, and is not used to create objects. It provides a 

framework and specifies a standard interface for its derived classes. This 

mechanism provides an im portant tool for creating extensible systems.
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4.3.3 Support of Composition

Composition of objects is also supported in the C ++ language. A member 

variable of a class can be an object of another class. Such a member variable is 

called a member object. Instructions are provided in C + +  to create and 

initialize a member object when an object is created, and to destroy the member 

object when the object is destroyed.

4.4 OOP for Engineering Software Development

Object-oriented programming in an object-oriented language facilitates a 

new style of software development: software development based on a large 

number of prefabricated reusable software components (or object classes). 

Object-oriented programming and object-oriented languages do not make 

software reuse happen, but they make it feasible and practical. Substantial 

applications can be built efficiently based on reusable software components 

accumulated from previous software projects. This new style of software 

development should be more productive than previous styles. Software 

developed in this way will be less error-prone, more abstract, more readily 

modified, and more extendible.

However, it may be questioned by some that the full advantage of an 

object-oriented language such as C + +  can only be realized by mastering the 

techniques of object-oriented programming. Object-oriented programming a t 

the present time is unfamiliar even to many computer science professionals, 

while many scientific and engineering software developers are even less educated 

in object-oriented techniques. This is indeed a major obstacle to the adoption of 

this new style of software development in engineering computing. However, to 

create good object classes for a certain area in engineering computing, 

knowledge in both the application-specific domain and in object-oriented 

programming techniques are necessary. W ithout a good-understanding of any
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one of these two aspects, the abstraction hierarchy for the application-specific 

domain can not be properly defined, nor can these abstractions be implemented 

into a set of quality object classes.

However, in many aspects this new style of software development can be 

performed more easily than the traditional styles of software development. This 

is because object-oriented programming makes a clearer distinction between the 

developers of reusable components (object classes) and the users of these 

components.

From the viewpoint of users of object classes, an object class is ju s t a data 

type that programmers can use in the same way as built-in types of the 

language. No internal details of these types need to be known to use them. 

This is similar to the aspect tha t one does not have to know how an integer 

variable is represented and operated on internally to use an integer variable. A 

variable of a certain class can be created as easily as variables of built-in types. 

The destruction of such variables also will be taken care by the compiler once 

they are out of scope. They can be operated on easily by following their class 

specifications, especially when operators are overloaded for their classes. Thus, 

programming in an object-oriented language by use of existing object classes 

does not necessarily require a sophisticated training in object-oriented 

programming. If a large collection of object classes are provided, it may be 

easier to perform than programming in traditional languages for many software 

projects.

Some may also be concerned tha t the run-time efficiency of object-oriented 

languages is not sufficient for numerical computation. Object-oriented 

programming performed in an object-oriented language does add overhead at 

run-time. However, it should be noted th a t not all engineering software is 

computationally intensive. In typical engineering software, often the portion 

which is computational intensive is relatively small in size, and the bulk of the
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program text is related to manipulation of data structures, storage management, 

input and output, pre- and post-processing, etc. In most cases, this portion 

grows much faster than the purely numerical part especially with the increasing 

demand for interactive computer graphics and graphical user-interfaces.

Moreover, due to the rapid increase of computer processing speed, the 

efficiency of a certain language for numerical computation has become less 

im portant now than ever before. This trend is also expected to be continued. 

Thus, efficiency needs to be a primary concern only for software component 

involving large scale computation.

To obtain a rough estimate of the run-time efficiency of the FORTRAN, 

C, and C-H- languages for numerical computation, benchmark tests for the 

matrix classes, which will be described in PART THREE, have been performed 

(Zhang, 1990c). In these tests, programs were written in the FORTRAN and C 

languages in a conventional format, and in the C + +  language using the matrix 

classes to evaluate certain matrix expressions for a large number of times. The 

test results showed th a t the C implementation was the most efficient one, and 

th a t the FORTRAN implementation was slightly slower. The C ++  program 

used 20% to 50% more CPU time than the C program for different matrix 

expressions. The author believes th a t this is a reasonable trade-off for the 

benefits obtained from object-oriented programming and the C + +  language.
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CHAPTER 5 SPECIFIC ISSUES RELATED TO 

THE SESDE DEVELOPMENT

The general software engineering principles and technologies related to the 

development of the SESDE have been reviewed in the preceding chapters. 

Specific considerations in the application of these principles and technologies in 

the current research are discussed in this chapter. These considerations include 

the design of reusable components for the SESDE, and the development of 

applications in the SESDE.

5.1 Design of Reusable Components

Identifying and defining individual reusable components as well as 

establishing the class inheritance hierarchy for a specific problem domain is not 

a trivial or an automatic process. It is a process independent of any specific 

programming language. Conceptual clarity, runtime efficiency, ease of 

development and use, and ease of future extension all need be considered in 

achieving the goal of reusability. Some considerations in the design of reusable 

components for the SESDE are described in the following sections.

5.1.1 Object-Oriented versus Functional Design

As described in Section 3.3, object-oriented design is superior to functional 

design in many aspects for achieving reusability. Thus, the object-oriented 

design approach is adopted in the development of SESDE. However, this does
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not exclude use of the functional approach in the development of software 

components. For some conceptually simple and distinct operations or 

computations specified by a small set of parameters, the functional approach can 

also lead to good component design.

As an illustration example, Figure 5.1 shows an abstract form of a reusable 

component, Root. This component is used for searching a root of a nonlinear 

equation, f(x) =  0, in a given range of x based on a functional design. An 

example application using the component is also shown in the figure. There are 

two functions in the component: the function StarchRoot provides the major 

service of the component, i.e., it searches for a root of the given equation in a 

given region; the other function, SetRootPrecision is used to change the default 

value of convergence tolerance used in searching for the root. If the required 

operation on a nonlinear equation in an application is only to find the roots of 

an equation, this functional design leads to a simple and clean client interface of 

the component.

On the other hand, if some other operations on a nonlinear equation are 

required in an application, e.g., performing numerical differentiation and 

numerical integration, an object-oriented design may be better than the 

functional design for this component. Figure 5.2 shows the specification of the 

component written in the C + +  language in an object-oriented design as well as 

the same example application. As seen from Fig. 5.2, if the application only 

searches a root of a nonlinear equation, the component implemented with an 

object-oriented design is not necessarily easier for the application than 

implemented by the functional design. Moreover, the component designed in 

the functional approach may be easier to use in an application written in a 

language other than C ++, such as FORTRAN.

Thus, the development of reusable components should not be restricted 

only to object-oriented design. Both object-oriented and functional design
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f
A  fu n c tio n a l design  o f  th e  R o o t c o m p o n en t

static double precision =  0.001; 
double SearchRoot(equation, x l, x2, error)
double (*equation)(); /* pointer to the function implementing a nonlinear equation * / 
double x l, x2; /* specify the region of x */
int error; /* error flag */
{

im p lem en ta tio n  detaile

}

void SetRootPrecision(prec)
double prec; /*  precision wanted by a client */
{

precision =  prec;
}

A n a p p lic a tio n  u s in g  th e  R o o t c o m p o n e n t

double nonlinear_equation(x) 
double x;
{

com puting  the value o f  the non linear equation a t a given x

, !
\  int main()

{
double x, a, b; 
int error;

printf(" Enter the definition of the region (a, b):"); 
scanf(" %lf %lf \  &a, &b);
x =  SearchRoot(nonlinear_equation, a, b, & error); 
if (0 = =  error)

printf("The root is % T \  x); 
else

printf("Can not find root"); 
exit (0);

}

Figure 5.1 Functional design of the Root component

f
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A n o b je c t-o r ie n te d  design  o f  th e  R o o t C o m p o n e n t

class Equation {
(‘double) () equation; 
double precision; 

public:
Equation(con8t (*double)()); /* constructor */
double SearchRoot(double a, double b, int ‘ error); /* method for searching a root */ 
double Integration(double a, double b, int ‘ error); /* method for integration */ 
double Difierentiation(double a, int ‘ error); /* method for differentiation */

other m ethods

};

A n  a p p lic a tio n  u s in g  th e  R o o t c o m p o n e n t

double nonlinear_equation(x) 
double x;
{

com puting  the value o f the non linear equa tion  a t a given x

}

int main()
{

Equation eq(nonlinear-equation); 
double x, a, b; 
int error;

printf(" Enter the definition of the region (a, b):"); 
scanf(" % U  % W ', &a, &b); 
x =  eq.SerachRoot(a, b, & error); 
if (0 = =  error)

printf("The root is % f ' ,  x); 
else

printf("Can not find root"); 
exit(0);

}

Figure 5.2 Object-oriented design of the Root component
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methodologies need to be considered in the development of components similar 

to that of the Root  component described above. The decision on the design 

method depends on the conceptual com plexity of the component and the 

requirements of the com ponent’s clients.

5.1.2 Inheritance versus Composition

There are many different ways to construct objects for a specific problem 

domain. As described in Section 4.1, objects or classes of objects are 

abstractions of real world entities. A class of complex objects may be 

represented by a series of abstractions, each of which is represented by a class 

distributed in a class inheritance hierarchy. Each of these classes maintains the 

properties to express its corresponding abstraction, and each implements the 

methods necessary to the abstraction. Thus, code duplication is avoided because 

similar object classes can be derived from the same series of base classes.

More importantly, complicated operations for a class of complex objects 

can be decomposed into a series of relatively simple operations performed by its 

base classes as well as the class self. Also as described in Section 4.1.5, object 

composition is an alternative mechanism to avoid code duplication and reduce 

code complexity. A powerful object-oriented language, such as the C++, 

provides support for both mechanisms.

Thus, when an existing class is similar in some aspects to the class being 

defined, questions may arise tha t whether the new class should be defined: (l) as 

a derived class from the existing one, or (2) as a sibling class derived from the 

same base class as the existing one, or (3) as a class whose instance is composed 

of an instance of the existing one. The class being defined is put in a lower 

abstraction level than the existing one by the first approach, in the same 

abstraction level as the existing one by the second approach, and in a branch of 

the class inheritance hierarchy tree (which may be different than the existing
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one) by the third approach.

As an example, consider the following relationship between two classes: 

one implements a 4-node, two-dimensional, solid element type, and the other 

implements an 8-node, two-dimensional, solid element type for finite element 

analysis. The class of the 4-node element type is derived from a class 

implementing a general two-dimensional solid element type. It implements 

properties for expressing the shape functions of 4-node elements, and methods 

manipulating these shape functions including evaluating function values and 

function derivative values at a given point.

From the above discussion, there are three ways to define the class of the 

8-node element type:

1. The class of the 8-node element type is defined as a  derived class of the 

class of the 4-node type. In this case, it implements properties expressing 

the shape functions of middle nodes and methods for manipulating these 

shape functions.

2. The class is defined as a derived class of the class of the general element 

type, and a sibling of the class of the 4-node type. In this case, it 

implements properties and methods for the shape functions of all the 

nodes of a 8-node element.

3. The class is defined such that its instance is composed of an instance of the 

class of the 4-node type. In this case, it contains a pointer to an instance 

of a 4-node element and implements properties and methods for the shape 

functions of middle nodes.

By the first and third approaches, code duplication for manipulating the 

shape functions of the corner-nodes can be avoided in the implementation of the 

class of the 8-node element type. However, because the 4-node and 8-node 

element types conceptually are of the same level of abstraction (that is, they are
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all special cases of the general element type), the second approach is more logical 

than the others. Even though in the second approach the code in the class of 4- 

node can not be reused for the 8-node class, the code duplication is not 

significant. Moreover, the code complexity resulting from the second approach 

may be lesser than tha t of the other two approaches.

In fact, there is another approach usually adopted in finite element 

programming: taking the 4-node element type as a special case of the 8-node 

element type and implementing the 8-node element type only. This is a 

common approach in which simple cases are reduced from a general and 

complex one. However, the complexity of the resulting code by this approach is 

often high, and should therefore be avoided.

In short, the aspect of where and how to use inheritance and composition 

mechanisms in defining an object system for a specific problem domain needs 

careful investigation. There are tradeoffs between conceptual clarity, code 

complexity, and code duplication.

5.1.3 Subsystems

A large object-oriented system tends to be composed of several levels of 

abstraction. Classes in the same level are often derived from the same base 

class. The classes of two-dimensional solid element types discussed in the 

previous section can be designed in the same level. Classes in the same level 

should have a standard interface to their clients (i.e., they should accept the 

same set of messages, and accept the same parameter list associated with each 

message). Only by a standard interface, can these classes be treated equally by 

their clients, and therefore be replaced or added to an application without 

affecting their clients.
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Several levels of classes related by an inheritance mechanism can be 

further grouped together forming a subsystem implementing a higher level 

abstraction. A subsystem may be called a software tool. GUIDES is such a 

subsystem designed for creating and handling the graphical user-interface of 

applications. A subsystem can be a "white-box" or a "black-box" to its clients. 

The clients of a white-box subsystem can, and have to, communicate with 

objects in the subsystem directly. Clients can also derive their own classes from 

the classes in the subsystem. The objects and the internal structure of a black- 

box subsystem are invisible to its clients. This type of subsystem is enveloped 

by a set of conventional interface functions. Clients can only communicate with 

the objects through these functions.

The benefits and disadvantages of these two approaches are clear. In the 

white-box approach, clients can communicate with the objects in the subsystem 

directly. This may lead to a higher runtime efficiency. Clients can also derive 

their own classes from the classes of the subsystem. This leads to a higher code 

reusability and extendibility. However, the clients of a white-box subsystem are 

forced to follow the same design methodology as the subsystem (i.e., object- 

oriented design), and are forced to use the same implementation language as the 

subsystem (such as C++). Moreover, the clients may tie their own class 

hierarchy together with the subsystem, thus leading to a complicated program 

structure.

The disadvantages of the white-box approach are the benefits of the 

black-box approach. A client can be designed using whatever methodology and 

implementation language tha t are appropriate to it. More importantly, if clients 

are designed in an object-oriented manner, the class hierarchy of clients is 

separated from the class hierarchy of the subsystem. This leads to a 

conceptually clean program structure.
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W hether a white-box approach or a black-box approach should be used for 

a subsystem depends mainly on the necessity for the clients to derive their 

classes from the classes in the subsystem. There are also tradeoffs between 

flexibility and conceptual clarity. GUIDES is developed using a black-box 

approach. The GUIDES development will be discussed further in PART TWO.

5.2 Applications Development

From the discussions in Section 3.4, both the operational model and the 

knowledge-based model are appropriate for the development of applications in 

an environment such as the envisioned SESDE consisting of a large collections of 

reusable software components and software tools. The knowledge-based model 

is superior to the operational model in the aspect of software productivity. 

However, it needs extensive programming tools which may not be available in 

the near future.

Thus, the development of applications in the early stage of the SESDE 

should follow the operational model. A prototype of an application would be 

built first according to its specification by using the existing reusable 

components and software tools. Feedbacks can then be obtained from both the 

end-user and the designer. The prototype would be then modified based on 

these feedbacks. The process would be repeated until both the end-user and the 

designers are satisfied. The last stage in this iterative development is to refine 

and optimize the prototype to build the final product of the application.



www.manaraa.com

86

LIST OF REFERENCES

1. Bailey, S. C., "Designing with Objects", Computer Language, January, 
1989, pp. 34-43.

2. Barbacci, M. R., Habermann, N. A., and Shaw, M., "The Software 
Engineering Institute: Bridging Practice and Potential", IEEE Software, 
November, 1985, pp.4-21.

3. Bassett, P . G., "Frame-Based Software Engineering", IEEE Software, July 
1987, pp.9-16.

4. Bishop, P., "Fifth Generation Computers", Ellis Horwood Limited, 1986,
166pp.

5. Burton, B. A., Aragon, R. W., Bailey, S. A., Koehler, K. D., and Mayes, 
L.A., "The Reusable Software Library", IEEE Software, July 1987, pp.25-
33.

6. Coad, P., and Yourdon, E., "Object-Oriented Analysis", Prentice-Hall, 
Inc., 1990.

7. Cox, B., and Hunt, B., "Objects, Icons, and Software-ICs", in Tutorial: 
Object-Oriented Computing, Vol.2, Implementations, Edited by Gerald E. 
Peterson, Computer Society Press, 1987, pp.99-108.

8. Cox, B., "The Object-C Environment", in Digest of Papers, CompCon88, 
Thirty-Third IEEE Computer Society International Conference, San 
Francisco, CA., Feb. 29 - Mar. 4, 1988, Computer Society Press, pp.166- 
169.

9. Depledge, P. G., "Software Engineering Terms and Concepts", in Software 
Engineering for Microprocessor Systems, edited by P.G. Depledge, 1984, 
Peter Peregrinus Ltd, 261pp.

10. Ellison, R., "Trends in Software Development Environment for Large 
Software Systems", in Digest of Papers, CompCon88, Thirty-Third IEEE 
Computer Society International Conference, San Francisco, CA., Feb. 29 - 
Mar. 4, 1988, Computer Society Press, pp.259-261.

11. Fischer, G., "Cognitive View of Reuse and Redesign", IEEE Software, July 
1987, pp.60-72.

f



www.manaraa.com

87

12. Ingraffea, T. and Mink, K., "Project SOCRATES: Fostering A New 
Collegiality", Academic Computing, October 1988, pp.20-21, 60-63.

13. Kaiser, G. E. and Garlan, D., "Melding Software Systems from Reusable 
Building Blocks", IEEE Software, July 1987, pp .17-24.

14. Kernighan, B. W., and Ritchie, D. M., "The State of C", BYTE, August 
1988, pp.205-210.

15. Lenz, M., Schmid, H. A., and Wolf, P . F., "Software Reuse through 
Building Blocks", IEEE Software, July 1987, pp.34-42.

16. Linowes, J. S., ' I t ’s an Attitude", BYTE, August 1988, pp.219-224.

17. Love, T., "The Economics of Reuse", in Digest of Papers, CompCon88, 
Thirty-Third IEEE Computer Society International Conference, San 
Francisco, CA., Feb. 29 - Mar. 4, 1988, Computer Society Press, pp.238- 
241.

18. Meyer, B., "Software Engineering for Engineering Software", in Tools, 
Methods and Languages for Scientific and Engineering Computation, 
Edited by B. Ford, J. C. Rault, F. Thomasset, Elsevier Science Publishers 
B. V. (North-Holland), 1984.

19. Meyer, B., "Object-oriented Software Construction", 1988, Prentice Hall, 
543pp.

20. Meyer, B., "Reusability: The Case for Object-Oriented Design", IEEE 
Software, March, 1987, pp.50-64.

21. Open Software Foundation, "OSF/Motif Program m er’s Guide", Prentice 
Hall, New Jersey, 1990.

22. Pinson, L., and Wiener, R., "An Introduction to Object-Oriented 
Programming and Smalltalk", Addison-Wesley, 1988, 502pp.

23. Prieto-Diaz, R. and Freeman, P ., "Classifying Software for Reusability", 
IEEE Software, January, 1987, pp.6-16.

24. Pyster, A. and Barnes, B., "The Software Productivity Consortium Reuse 
Program", in Digest of Papers, CompCon88, Thirty-Third IEEE Computer 
Society International Conference, San Francisco, CA., Feb. 29 - Mar. 4, 
1988, Computer Society Press, pp.242-247.

25. Rappaport, A. and Hinder, V., "Market Im pact of Integrated Software 
Development Environment", in Digest of Papers, CompCon88, Thirty- 
Third IEEE Computer Society International Conference, San Francisco, 
CA., Feb. 29 - Mar. 4, 1988, Computer Society Press, pp.250-253.

26. Shaw, M., "Abstraction Techniques in Modern Programming Languages", 
in Tutorial: Object-Oriented Computing, Vol.2, Implementations, Edited 
by Gerald E. Peterson, Computer Society Press, 1987, pp.146-161.



www.manaraa.com

88

27. Sommerville, I., "Why Software Engineering", in Software Engineering for 
Microprocessor Systems, edited by P.G. Depledge, 1984, Peter Peregrinus 
Ltd.

28. Sommerville, I., "Software Engineering", Second Edition, 1985, Addison- 
Wesley, 334pp.

29. Stroustrup, B., "The C ++ Programming Language", 1987, Addison- 
Wesley, Massachusetts, 328pp.

30. Stroustrup, B., "W hat is Object-Oriented Programming?", IEEE Software, 
May, 1988a, pp. 10-20.

31. Stroustrup, B., "A Better C?", BYTE, August 1988b, pp.215-216D.

32. Thomas, D., "W hat’s in an Object", BYTE, March 1989, pp.231-240.

33. Tracz, W., "Reusability Comes of Age", IEEE Software, July 1987, pp.6-8.

34. Wegner, P ., "Capital-Intensive Software Technology", IEEE Software, 
July, 1984, pp.7-45.

35. Wegner, P. "Learning the Language", BYTE, March 1989, pp.245-253.

36. Wiegand, G., "HOOPS Reference Manual", Second Edition, Ithaca 
Software, 1988.

37. Zhang, H., White, D. W., and Chen, W. F., "A Library for Object- 
Oriented Programming in C", Structural Engineering Report, CE-STR- 
90-9, School of Civil Engineering, Purdue University, West Lafayette, 
Indiana, April, 1990a, 55pp.

38. Zhang, H., Tan, L., White, D. W., and Chen, W. F., "Design and 
Implementation of GUIDES: A Graphical User-Interface Development 
System", Structural Engineering Report, CE-STR-90-7, School of Civil 
Engineering, Purdue University, West Lafayette, Indiana, June, 1990b,
112pp.

39. Zhang, H., W hite, D. W., and Chen, W. F., "An Object-Oriented Matrix 
Manipulating Library", Structural Engineering Report, CE-STR-90-10, 
School of Civil Engineering, Purdue University, West Lafayette, Indiana, 
June 1990c, 77pp.

r
\



www.manaraa.com

89

I

PART TWO

A GRAPHICAL USER-INTERFACE DEVELOPMENT SYSTEM
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CHAPTER 6 GRAPHICAL USER INTERFACE TOOLS

The intent of this chapter is to give a brief review of the current 

technology of Graphical User-Interface (GUI) tools. Recent achievements in the 

development of graphical user-interfaces are summarized in Section 6.1. The 

necessary separation of user-interface components from application-specific 

components and the benefits associated with the use of general graphical 

interface tools are described in Section 6.2. The architecture and characteristics 

of graphical user-interface development systems are presented in Section 6.3. 

Several issues that need to be considered in design of user-interface tools are 

discussed in Section 6.4.
(

Three different types of GUI tools are described in Sections 6.5, 6.6, and 

6.7: the Macintosh GUIs (Mednieks et al., 1986; Schmucker, 1987; Shell, 1988), 

the X I1 Toolkit (McCormack et al., 1988a, 1988b; Swick et al., 1988), and the 

GUI tools of the GRAFIC/CE88 system (Zhang et al., 1988a). The purpose of 

these sections is to illustrate the state-of-the-art of graphical user-interface tools 

in 1989. The design of GUIDES, the Graphical User-interface DEvelopment 

System, has evolved from the study of the first two systems and from 

experiences in the development of GRAFIC/CE88. The OSF/Motif, a 

commercial graphical user-interface development system which has appeared on 

the m arket in 1990, is described in Section 6.8 to provide more updated 

information.

('
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6.1 Introduction

In the last decade, engineering software has rapidly progressed from non­

interactive to highly interactive programs. The common view of how programs 

should interface with the user has now changed to include the direct 

involvement of the user during execution. Since Apple introduced its 

revolutionary Macintosh computer in 1984, software interfaces have further 

progressed from being text-oriented to graphics-oriented. Interactive graphical 

user-interfaces have been referred to by many as the wave of the future 

(Seymour, 1989; Fiedler, 1989). They are an important feature of today’s 

successful software systems, and they will be a necessary aspect of future 

software systems. A t present, the graphical user-interface technology is still in 

its infancy. In fact, graphical user-interfaces are one of the major areas in 

software engineering research (Dodani et al., 1989; Fiedler, 1989; Greenberg, 

1989; Hartson, 1989; Hayes et al., 1989; Hurley et al., 1989; Myers, 1989; 

Thompson, 1989).

The increased utilization of GUIs has been driven by the introduction of 

powerful workstations with bitmapped screens and pointing devices. Since 

pictures are easier to understand than text, software that has a GUI is easier to 

learn and use. Moreover, in many cases GUIs make the software more powerful. 

GUIs provide engineers and scientists the means to manipulate data directly in a 

graphical mode. They offer impressive advantages including better analysis, 

improved productivity, and increased cost savings.

At present, many operating and windowing systems provide support for 

the development of GUIs for application-specific software. The operating system 

of the Macintosh computer was the first system of this sort. This has given 

Apple a competitive edge in the personal computer market. MIT, in cooperation 

with DEC and IBM, has developed a  standard graphics-based software platform 

called the X Window System. This system is well written, and serves as a base 

for the development of a variety of GUIs.
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Another popular package is NeWS (the Network Extensible Window 

System) from Sun Microsystems. NeWs is based on the PostScript language. 

The Open Software Foundation (OSF) has finally released their GUI product, 

OSF/Motif, in 1990. This package is also based on the X Window System 

(Paul, 1989). NeXT’s NextStep is a similar system for the NeXT computer. 

Comprehensive reviews on the state-of-the-art of GUIs can be found in (Fiedler, 

1989; Greenberg, 1989; Hayes et al., 1989; Myers, 1989; Seymour, 1989).

Systems which support GUI development must provide an Application 

Program Interface (API) by which applications build their GUIs. An API is 

built on top of a windowing and/or graphics system depending on the 

architecture of the system. A windowing system is a set of programming tools 

for building interface components and for collecting user input and passing the 

input to applications running within the system. A graphics system defines how 

graphics are actually displayed on the screen. Windowing and graphics systems 

often provide tools for application programmers to create graphical interfaces 

and integrate the interface with their applications. These systems will be 

discussed further in the following sections.

6.2 The Need for GUI Tools

Interactive user-interface software is often large, complex, and difficult to 

debug and modify. An application’s interface can account for a significant 

fraction of the code. Furthermore, the creation of a good user-interface is 

difficult. There are no guidelines or techniques which guarantee th a t a program 

will be easy to learn or use. The only reliable way to generate a quality 

interface is to test prototypes and modify the design based on user’s comments. 

This may be referred to as interactive design.

Many programs have been designed with the user-interface component and 

application-specific components combined. The problem with this approach is
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tha t it is extremely difficult to maintain and modify such a monolithic system. 

Dodani et al. (1980) illustrates this problem as follows. When W ordStar’s user 

interface was redesigned to produce W ordStar 2000, the effort was nearly 

equivalent to writting an entire new program. Such an enormous effort suggests 

th a t little or no code from the previous version could be reused. This was most 

likely due to fact that the old user-interface was intimately intertwined with the 

code tha t supported the word processing application.

An application should be seen as consisting of separate user-interface and 

application-specific components. The benefits of separating the interface 

component from application-specific components are obvious. The interface and 

application-specific components can be designed, developed, tested, and modified 

separately. The interface component can be altered or even replaced without 

affecting the code tha t defines the application. Moreover, the separation leads 

naturally to the development and utilization of general interface tools.

Utilization of user-interface tools provides two main advantages over direct 

coding of the user-interface with the application-specific code (Myers, 1989):

1. It results in better interfaces:

• It encourages interactive design. An interface can be rapidly 

prototyped and implemented, possibly even before the application- 

specific code is written.

• Different applications will have more consistent interfaces because 

they have been created with the same user-interface tools.

• It is easier to involve nonprogrammers such as graphic artists, 

cognitive psychologists, human factors specialists, and end-users in 

designing the interface.
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2. The user-interface code is easier and more economical to create and 

maintain:

• It is better designed and has a higher reliability because it has been 

separated from the specific applications.

• It is more reusable because the user-interface tools incorporate 

common parts of many applications.

• It can serve as a crucial layer between applications and evolving 

user-interface and programming environment. Thus, it is easier to 

port an application to different environments, and to avoid early 

obsolescence of applications due to changes in the environment.

Due to these advantages, many tools have been created in the software 

industry to facilitate user-interface development. To build quality user-interface 

tools, two main principles need to be followed: reusability and encapsulation. 

User-interface tools should be designed as general tools so th a t they can be 

reused readily in diverse applications. The details about the implementation of 

a tool should be encapsulated such tha t the tool can be used without a detailed 

understanding of the underlying implementation. The object-oriented 

programming methodology supports these principles, and it has been widely 

used in the development of many existing user-interface tools. The classification 

of existing tools is considered next.

6.3 Current State of GUI Development Systems

Myers (1989) classifies user-interface tools in two general forms: user- 

interface toolkits and user-interface development systems.
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6.3.1 User-interface Toolkits

A user-interface toolkit is a library of interaction techniques. An 

interaction technique is a graphical tool or a way of using a physical input 

device (such as mouse or keyboard) to input a value (such as typing a key or 

clicking a mouse button) along with the feedback tha t appears on the screen. 

Typical interaction techniques are menus, scroll bars, and buttons operated with 

a mouse. Most windowing systems come with a toolkit th a t a programmer can 

use by writing code to invoke and organize the interaction techniques.

There are two kinds of toolkits. The most conventional one is a collection 

of procedures th a t can be called by application programs, such as the Macintosh 

Toolbox (Mednieks et al., 1986). The other kind uses the inheritance feature of 

the object-oriented programming paradigm. This makes it easier for the 

designer to customize the interaction techniques. The X l l  Toolkit (McCormack 

et al., 1988a, 1988b; Swick et al., 1988) is an example of this kind of package.

The disadvantage of using toolkits is tha t they are often time consuming 

and difficult to use. A toolkit typically includes hundreds of procedures that 

implement different interaction techniques. It is often not clear how to use the 

procedures to create a desired interface. Thus, toolkits do not provide much 

support for the design of interfaces.

6.3.2 User-interface Development Systems

The problems associated with toolkits have led to the creation of graphical 

user-interface development systems, such as the Apple MacApp. Apple 

developed this system after it found th a t people were having difficulty using the 

Macintosh Toolbox (Myers, 1989). A user-interface development system is an 

integrated set of graphical interface tools which can help programmers: (1) to 

specify the interaction techniques of an interface during the design phase, and 

(2) to create interaction techniques and manage the interaction between the
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end-user and the application during run-time. A comprehensive development 

system should handle all aspects of an interface. This includes management of 

all portions of the display and all aspects of the interaction between the user 

and the application.

A user-interface development system is usually built on top of either a 

graphics or a windowing system. The architecture of the existing user-interface 

development systems varies. A typical development system may contain the 

following three components:

1. An interaction control component that handles event queuing and

sequencing.

2. A programming framework tha t helps in constructing the interface

component’s interaction techniques and in establishing the connection 

between the interaction techniques and the application’s semantics.

3. A user-interface construction set tha t enables the interactive construction

of user interfaces without requiring an understanding of implementation 

details of the interface.

The details of each of these components is discussed below.

6.3.2.1 Interaction Control Component

The interaction control component (or event manager) manages the

communications between the end-user and the application. It collects the raw 

user input (i.e., the events) via the windowing or graphics system, interprets the 

events, and communicates the interpreted events to the appropriate code unit in 

the interface or the application-specific component.
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6.3.2.2 Programming Framework

The programming framework provides facilities with which to: (l) 

construct the interface component of an application, and (2) manage the 

communications between the interface component and application-specific 

components. The framework is concerned with the presentation of application- 

specific information to the user, accepting user input via the event manager, and 

invoking application functions to perform the functionality of the application. 

In most development systems, frameworks are designed using an object-oriented 

approach. The effectiveness of a  framework depends on the ease with which it 

can be used. Frameworks can be classified as either "white-box" or "black-box" 

(Dodani et al., 1989).

The use of a white-box framework requires knowledge of its internal data 

structures and implementation. A white-box framework provides a main driver 

for controlling and sequencing the activities and can be seen as an extensible 

skeleton. The interface techniques specified in the skeleton can be tailored to 

suit a particular application. Typical examples of the white-box approach are 

the MacApp framework (Schmucker, 1987) and the ICpak 201 framework (Cox 

et al., 1987).

The strength of a white-box approach is its flexibility for creation of 

different kinds of interaction techniques. A basic problem associated with the 

use of this approach is th a t it requires intimate knowledge of the underlying 

structure and implementation of the framework. This requires a steep learning 

curve for developers and makes the tools usable only by experts. A natural way 

to reduce the complexity of this approach is to provide a construction set that 

automates the process of building an interface.

In contrast, a  black-box framework requires th a t a designer only provide a 

specification defining the interaction techniques for a  specific application and the 

methods by which users interact with the application. Thus, a black-box
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framework requires that the designer understand only the external interface of 

the major components of the framework. A special-purpose language, called the 

interface description language, is usually necessary to specify the interface. The 

framework reads and interprets the specification a t run time to establish 

automatically the appearance of the interface, and to establish the connection 

between each individual interaction technique and between the interface and 

application-specific components.

The description language enables application programmers to define the 

characteristics of the user interface independent of the actual application code. 

Application programmers can make changes to the overall appearance and 

layout of an application without having to modify, recompile, or relink the 

application itself. A commercial example of a user-interface description 

language is the User Interface Language (UIL) for the OSF/M otif user-interface 

development system (Paul, 1989).

The main weakness of the black-box approach is th a t it usually provides 

only a limited number of interaction techniques. Also, it requires the interface 

designers to understand the description language. A construction set helps to 

alleviate this second weakness.

6.3.2.3 Construction Set

A construction set is an interactive graphics tool for building the user- 

interface w ithout requiring the user to understand the implementation details of 

the framework. It lets designers define the interface by: (1) selecting and placing 

the desired interaction tools of the framework on the screen, and then (2) 

describing interactively the connection between the interaction tools and 

between the tools and the application-specific code.

f
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W ith a white-box framework, the construction set may produce the code 

which implements the interface. This code can be compiled and linked with the 

framework. With a black-box framework, the construction set may produce an 

interface specification in the description language of the development system. 

This specification can be used by the framework at run time to establish the 

interface.

A construction set provides the necessary basis for rapid prototyping and 

incremental development of user-interfaces. The philosophy behind the use of a 

construction set is that, because the visual presentation of the interface is one of 

its most important aspects, a graphical tool is the most appropriate way to 

specify the presentation. Construction sets are often very easy for the designer 

to use. Some of these systems can be used easily by non-programmers. Typical 

examples of construction sets are the ViewEdit for the MacApp framework 

(Dodani et al., 1989) and the Interface Builder (IB) for the NeXT computer 

(Thompson, 1989). The construction set itself is however very complicated to 

develop.

6.4 Issues in Design of GUI Tools

The separation of the GUI from the applications raises three important 

questions in the design of interface tools: (1) how should the interface 

component be separated from applications such th a t both interface component 

independence and run-time efficiency can be satisfied; (2) how should the 

interface component and the application-specific components communicate at 

run-time; and (3) how should the user-application interaction process be 

controlled. These questions are addressed below.

(
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6.4.1 Semantics of the Interface Component

Most user-interface tools are event-based. Figure 6.1 shows a simplified 

view of an application where the interface component is separated from the 

application-specific components. There are two types of dialogue which occur in 

this type of application: external and internal.

U S E R

In te rn a l  D ialogue
E x te rn a l D ia logue

IN T E R F A C E
C O M P O N E N T

A P P L IC A T IO N -
S P E C IF IC
C O M P O N E N T S

R aw  E v e n ts
N o rm a lise d  E v e n ts

Figure 6.1 A simplified view of an application that has a GUI
I\

The external dialogue occurs between the user and the interface. This 

dialogue varies among different user-interface systems. This dialogue involves 

what the user does and perceives in the interaction with the computer. A raw 

event, such as typing a  key or moving the mouse, is the simplest dialogue unit 

which can have meaning to an application.

The internal dialogue occurs between the interface component and the 

application-specific components. The raw events generated from the external 

dialogue are mapped by the interface component to normalized events th a t the 

application-specific components will respond to. Normalized events are based on 

raw events and are sensitive to  the interaction context. A raw event may be 

mapped to different normalized events when placed in different interaction 

contexts.

f
\
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Independence of the interface component from the application-specific 

components is crucial for easy modification and maintenance of a user interface. 

When this independence is achieved, only the external dialogue and the event 

mapping in the interface component need be changed to improve or modify the 

external dialogue style and appearance of an interface. The internal dialogue 

does need not be changed, and the application-specific components need not be 

aware of the change.

Depending on the context of the interaction, some raw events may be 

discarded, and some may be combined to generate normalized events. These 

operations are performed according to the semantics embedded in the interface 

component. An application needs to give fast semantic feedbacks to the raw 

events generated by the end-user’s action. Fast feedback is very im portant for 

direct manipulation interactions such as dragging an object defined by the 

application or rubber-banding a line. Both for proper generation of normalized 

event and for fast semantic feedback, the embedding of high-level semantic 

capability into the interface component is necessary. However, the amount of 

embedded semantics capability must be decided carefully. A t some level, the 

developer of the user-interface system must make a clean and logical separation 

between the application and the user-interface.

6.4.1.1 Low-level Semantics Capability

Lower-level semantics capability in the interface component leads to 

cleaner separation and stronger interface component independence. As an 

extreme case, the interface component could pass all the raw events to the 

application-specific components without performing any interpretation of them. 

This is called micro-communication (Hartson, 1689). Micro-communication 

leads to communication overhead in the internal dialogue, and decreases run­

time efficiency. Moreover, it jeopardizes application independence. The
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application-specific components have to process raw events that should be 

processed in the interface component. Any change in the external dialogue leads 

to a change in the application-specific components. This is not consistent with 

the motivation of separating the interface component from the application- 

specific components.

6.4.1.2 High-level Semantics Capability

Higher-level semantics capability in the interface component leads to 

better run-time efficiency. The interface component can consume many raw 

events and respond quickly to the end-user by its own semantics. Fewer 

normalized events need be passed to the application-specific components. This 

is called macro-communication (Hartson, 1989). However, if the level of 

semantic capability embedded into the interface component is too high, the 

interface component may become too complex. Moreover, in order to process 

events and provide proper feedback, this type of interface component has to 

have extensive knowledge about the application’s semantics. Higher semantics 

capability in the interface component means less independence of the interface 

component from the application-specific components.

6.4.1.3 The Ideal Level of Semantics Capability

Proper definition of the semantics of the interface component is im portant 

to achieve both interface component independence and run-time efficiency. 

Ideally, the interface component should contain only the semantics tha t support 

the interaction functions (i.e., those functions which produce the display and 

extract valid input). Therefore, it should include the semantics for accepting, 

parsing, validating, and mapping the raw events to normalized events. It should
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also include user prompts, error and confirmation messages, and other displays 

directly associated with extracting user input. It should only send normalized 

events to the application-specific components that are meaningful to them.

In some special cases, the interface component may need to share memory 

and/or data structures with the application-specific components to improve 

run-time efficiency. However, to achieve interface component independence, 

coding details associated only with the user-interface should be isolated from 

those associated with the application’s structure and specific components.

6.4.2 Communication and Control

The technique for communication between the interface and application- 

specific components depends on the run-time control mechanism of the user- 

interface tools. There are two typical control mechanisms: internal control and 

external control.

6.4.2.1 Internal Control

If internal control (i.e., application control) is utilized, the application 

handles the interaction. The application simply calls interface procedures to get 

events when input is desired. The events are then interpreted by the application 

according to the interaction context, and dispatched to the appropriate 

application-specific components to respond to the events. The communications 

between the interface and the application-specific components are accomplished 

by the application calling certain procedures of the interface tools. This model 

is used by many user-interface toolkits such as the Macintosh Toolbox.

A skeleton file is often provided by Toolkits which use internal control. 

This file contains the basic event polling-loop source code. However, for
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applications with a complex user-interface, the polling loop is complicated, and 

it is difficult to design the application-specific code to fit within it. Even with 

the availability of the skeleton file, it still takes a considerable amount of time 

to organize the code of an application to fit within the framework of the 

skeleton.

6.4.2.2 External Control

Most user-interface development systems use external control (i.e., 

development system control). The development system handles the interaction. 

It processes the raw events obtained from either the windowing or the graphics 

system. When normalized events (generated from the raw events) match with 

the application’s interested in, procedures in the application-specific components 

will be called to perform operations in response to these events. The most 

popular communication technique for external control is to use callback 

functions.

In this approach, the application passes to the development system the 

pointers to functions that should be called as well as the events tha t should 

invoke the functions. The development system then handles all the calls to the 

callback functions in response to  the appropriate events. This is probably the 

most straightforward and efficient technique (Myers, 1989). The benefit is that 

the application developer is relieved from handling the interaction process. 

W ith external control, the frequency of communication between the interface 

component and application-specific components is usually less than with internal 

control. Thus, a better run-time efficiency is achieved.
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§ 6.4.2.3 Mixed Control

Finally, there may also be mixed control, where either the development 

system or the application can be in charge a t certain stages of the interaction 

(Myers, 1989).

6.4.2.4 Use of Shared Memory

In most cases, the memory used by the interface component and the 

application-specific components is separated. As described above, the 

communication between the interface component and the application-specific 

components is accomplished either by the application calling functions in the 

interface component to get events, or by the interface component calling 

callback functions in the application to respond to the events. However, the 

memory used by the interface component and by the application-specific 

components does not have to be separate. Use of shared memory is another way 

to accomplish the communication.

In certain cases, such as in a direct-manipulation user-interface, fast 

semantic feedback requires a frequent communication. The use of shared 

memory (Myers, 1989), may be better for such cases. In the shared memory 

approach, both the development system and the application-specific components 

poll shared da ta  to check for changes, or they are automatically notified of the 

changes.

6.5 Case Study: Macintosh Tools

The Apple Macintosh environment contains several different levels of GUI 

tools including the Toolbox, the MacApp framework, and the HyperCard 

environment. Apple has done pioneering work in the development of GUIs.
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However, because the Apple Macintosh operating system is a closed system, the 

general use of these tools is limited. Many developers would like to use the 

Macintosh Toolbox, MacApp or HyperCard, but they cannot unless they develop 

their software systems to run only on the Apple Macintosh.

6.5.1 Macintosh Toolbox

The Macintosh Toolbox is an example of a user-interface toolkit which 

uses internal control. The Toolbox offers many handy interface techniques such 

as menus, scroll bars, and dialogue boxes for building the user-interface. 

However, to use these techniques, programmers have to handle the user- 

computer interactions explicitly in the application’s code. Figure 6.2 shows a 

sample procedure for handling an event-loop written in the C language.

As evident from Figure 6.2, the event manager of the Toolbox does not 

have much semantics capability, and thus programmers are forced to handle 

details about events. As an example, for the mouseDown event, the procedure 

do-mouse-down must determine whether this event occurs in a menu bar, in the 

area for dragging the window, or in some other place. For applications with 

complex interaction semantics, this type of event processing is too complicated.

An im portant feature of the Macintosh Toolbox is its resource 

management utility (Mednieks et al., 1086). Resources are data specifying the 

static layout of application interfaces and the connections between interaction 

techniques. A resource utility provides a consistent way for program developers, 

publishers, and users of the Macintosh computer to specify or modify the 

interface. It allows the user to change the appearance of the interface of an 

application to suit his taste without modifying the source code, and it allows the 

publisher to translate all text in the interface into foreign languages. For the 

developers, it is even more beneficial. Changes to resources are much easier to 

make than changes to the code itself. The resource management utility of the
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event_loop()
{

EventRecord my_event;

while (1) {
GetNextEvent(everyEvent, &my_event); 
switch(my_event.what) { 
cp.se mouseDown:

do_mouse_down(&my_event); 
break; 

caae mouseUp: 
case keyDown: 
case keyUp: 

break; 
case updateEvt:

do_update(&my_event); 
case activeEvt:

do_activate(&my_event); 
default: /* some other events */

break;
}

}
}

Figure 6.2 Event handling with Macintosh Toolbox
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Macintosh Toolbox also allows non-programmers to become involved in the 

design of the user-interface through the use of a resource editor.

Resources are stored in a standard resource file. Figure 6.3 shows a sample 

portion of a resource file which specifies a dialogue box (Mednieks et al., 1986). 

In this figure, the text preceded with double semicolons (;;) is a comment.

As can be seen in Figure 6.3, resources are written in a particular 

description language, but the level of the language is quite low. The statements 

are not easy to understand without comments.

6.5.2 MacApp Framework

MacApp is an object-oriented white-box framework that equips 

programmers with a prefabricated standard Macintosh user-interface for 

applications. The basic goal of the MacApp is to provide a user-interface 

framework that: (l) automatically handles the characteristics common to all 

applications, such as resizing windows, and (2) allows programmers to plug in 

application-specific details such as the contents of each window (Dodani et al., 

1989). There are more than 30 different classes and over 450 methods in the 

MacApp which handle the default behavior of user-interfaces (Schmucker, 1986). 

An application programmer can specialize the classes to build a particular 

application interface by using the inheritance mechanism of the Object Pascal 

language.

To use the MacApp, an application has to be structured in an object- 

oriented fashion in terms of the MacApp’s object classes. Also, derived classes of 

certain MacApp classes have to be developed to specialize the application. It is 

estimated by Schmucker (1986) tha t the MacApp can reduce application 

development time by a factor of four or five, and tha t it can decrease the 

amount of source code needed for an application also by a factor of four or five.
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Type DLOG ;;A Dialogue Box
,256 ;;ID #256
100 100 200 250 ;;The dialogue’s rectangular window
Visible 1 NoGoAway 0 ;;It is visible, has Procld, no go away
270 ;;1D of its item list

Type DITL ;;A dialogue’s item list
,270 ;;ID #270
5 ;;Five items in the list

StatText Disabled ;;Uneditable text, not mouse sensitive
20 40 35 180 ;;The text’s rectangular window
A sample dialogue box ;;The text

Btnltem Enabled ;;A button, mouse sensitive
50 10 70 70 ;;The button’s rectangular window
Resume ;;The button’s label

ResCItem Enabled ;;A control item, defined in a resource
70 10 120 26 ;;The rectangular window for this control
257 ;;The resource ID of the control

Iconltem Disabled ;;An icon
40 150 72 182 32x32 rectangular window
257 ;;Resource ID of the icon

Userltem Disabled ;;An application’s own item
80 40 120 230 ;;The rectangular window it will be displayed in

Figure 6.3 A Macintosh resource file

r
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However, it is clear that MacApp can only be used by experienced programmers. 

The learning curve for using the MacApp is steep.

6.5.3 HyperCard and HyperTalk

Apple introduced HyperCard in the fall of 1987. The HyperCard is a 

sophisticated environment with elements of database management, object- 

oriented programming, graphics, and GUIs. It gives non-programmers the 

ability to manipulate the graphical interface of the Macintosh in a  practical 

way. HyperTalk is an object-oriented language for programming with the 

HyperCard th a t is easy to learn and use. The HyperCard environment and the 

HyperTalk language can be seen as an im portant software breakthrough. 

Detailed information about HyperCard and HyperTalk can be found in (Shell, 

1989; Weiskamp et al. 1988).

HyperCard provides a set of basic objects for programming. Programs 

written in the HyperTalk language are called scripts which can be attached to 

HyperCard objects. Instead of having one large program, an application is 

divided into many small scripts attached to the objects that compose the 

application. Objects communicate with each other by receiving and sending 

messages. Each script is a message sender as well as a  message handler. A 

script is invoked when the object to which the script is attached receives a 

message.

There are about 47 system messages, and many of these messages are 

related to the state or position of the mouse. For example, clicking the mouse 

button at any time causes the HyperCard to send out a sequence of messages 

starting with the message mouseDown and ending with the message mouseUp 

with a number of mouseStillDown messages in between. Each command in the 

HyperTalk language is a message, and applications can also define their own 

messages.
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Figure 6.4 shows a script attached to a Button object which prompts the 

user to input a text string, and then uses the find  command to search for the 

text string (Shell, 1988). Text preceded with double hyphens (—) is a comment. 

Figure 6.5 shows two dialogue boxes tha t are invoked by the commands ask and 

answer respectively contained in the script. This example illustrates how easy it 

is to program a user-interface in HyperTalk.

on mouseUp
ask "Please enter some text for searching.”
if it is empty then exit mouseUp —Exits if Cancel button pressed
put it into searchString 
find searchString
— If text cannot be found then put up message of explanation 
if the result is not empty then —That is, if there is an error message

answer "Can’t find the search text in this stack." 
exit mouseUp 

endif
—To make the Return key do repeated finds
put "find"&&quote&searchString&quote —Puts find command in message box 
hide message 

end mouseUp

Figure 6.4 A HyperTalk script

In this environment, developers of applications can easily represent their 

ideas and information with words and pictures. The graphical user interface can 

be implemented w ithout much programming effort. Moreover, because an 

application is a collection of independent scripts, any script can be enhanced, 

replaced, or discarded without adversely affecting the operation of the 

application.

At present the HyperCard is not yet powerful enough. It cannot create 

applications which can be run outside the HyperCard environment (i.e., the 

binding of the application and HyperCard is at run-time rather than a t link 

time). It is also a poor environment for team programming, which is essential
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P lease  e n te r  som e te x t  fo r sea rch in g .

OK CANCEL

(a)

C an ’t  find th e  search te x t in th is  stack .

OK
       ..........

P>)

Figure 6.5 Dialogue boxes invoked by the (a) ask and 
(b) answer commands of HyperTalk
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for large projects (Weiskamp, 1988). Moreover, the data structures supported 

by HyperCard are limited. This is a serious drawback for development of 

applications involving complicated data structures. However, the HyperCard 

and the HyperTalk language illustrate the promising features of a graphics- 

oriented programming environment.

6.6 Case Study: The X I1 Toolkit

6.6.1 Overview

The X ll  toolkit (McCormack et al., 1988a, 1988b; Swick et al., 1988) is an 

object-oriented construction kit built on top of the X Windows System, version 

11 (X ll). The toolkit is used to write interaction techniques, referred to as 

Widgets, to organize sets of widget instances into a complete user-interface, and 

to link a user interface with the functionality provided by an application.

There are three layers in the toolkit: (1) A set of Intrinsic mechanisms to 

be used by widget programmers to build widgets; (2) An architectural model for 

constructing and composing widgets, which allows the widget programmer to 

design new widgets by using the Intrinsics and combining other widgets; and (3) 

A consistent interface for use by application programmers, which is built on top 

of the toolkit, and includes a set of widgets and composition rules.

A typical X ll  Toolkit application consists of three parts: the application, 

the user-interface, and a link between them. The application is a set of callback 

functions which the toolkit calls in response to user actions. The user-interface 

is a  tree of widget instances. The link part binds the callback functions and 

their related data structures to the widgets as the widgets are created. Many 

applications may use only the existing widgets to build their interfaces. If more 

specialized user-interface components are needed, widget programmers can 

create new widgets from existing ones by using the inheritance mechanisms 

embedded in the X ll  Intrinsic.
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6.6.2 Widgets

The fundamental data type of the X ll  toolkit is the widget. Widgets are 

dynamically created. Every widget belongs to exactly one widget class, which is 

statically allocated and initialized, and which contains the allowable methods for 

widgets of that class.

A widget is an object tha t provides a user-interface abstraction. 

Physically, it occupies an area on the screen with associated I/O  semantics. 

Some widgets display information, while others are merely containers for other 

widgets. Some widgets are output only, and do not react to input (i.e., to the 

user’s actions), while others change their display in response to input and can 

invoke functions that an application has attached to them.

A widget class defines the methods and data that are associated with all 

widget instances belonging to tha t class. Methods of a widget class are only 

callable via widgets of tha t class. These methods are usually invoked by a set of 

application callable generic procedures tha t accomplish operations on widgets by 

calling appropriate methods. The methods and the data can be inherited by 

classes derived from th a t class. A widget class is free to use its base class’s 

methods through the inheritance mechanism of the X ll  Toolkit rather than 

implementing its own code.

Figure 6.6 shows a class hierarchy of the widget set distributed by the 

Projeet Athena a t MIT. The toolkit intrinsic defines four special classes: Core, 

Composite, Constraint, and Shell. All other classes are implemented as direct or 

indirect derived classes of these classes. The Core class contains the definitions 

of data and methods common to all widgets. It is the root of the class 

inheritance hierarchy. Composite widgets are distinguished by the fact th a t 

they can have children. The Composite class implements the data and methods 

for managing children of a Composite widget. This includes adding and deleting 

a child and managing the geometry of children. The Constraint class is a
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derived class of the Composi te  class. Cons traint  widgets manage the geometry 

of their children based upon constraints associated with each child. Shell 

widgets hold an application’s top-level widgets and allow them to communicate 

with the window manager.

I Label I
I

|_CommandJ

L_Booleai^J

[_ C o r^ ]

I^ScrgllbarJ |_Com^ogiteJ

|___Shell__| |_B uttonB ox_J [_Con^traintJ [_MenuJ

LFormJ |_Pane_]

Figure 6.6 Class hierarchy of the widget set distributed by the Project Athena

(

6.6.3 Widget Semantics

The semantics of a widget specifies the mapping (or translation) of event 

sequences into the behavior of the widget. The simplest example of widget 

semantics would be to call procedure Abe when key y is pressed in a particular 

widget. The semantics of a widget usually are not hard-coded. Instead, the X ll  

Toolkit provides for a widget default semantics which are overridable by the 

clients of the widget. Thus, clients (applications or other widgets) may change 

the semantics of a widget instance when necessary. This mechanism provides a 

great deal of flexibility in customizing existing widgets.
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6.6.4 Event Handling and Callback Mechanism

External interaction control is used in the X ll  Toolkit. A typical 

application consists of startup code followed by an event loop. The event loop is 

handled in the X ll  Event Manager, XtMainLoop, which reads events and 

dispatches them by calling the procedures that have been registered with 

widgets.

The communication between widgets and their clients, either application 

functions or other widgets, is established by the clients registering callback 

procedures to the widgets. A widget can contain one or more callback lists. 

Each callback list contains at least one callback procedure. Every procedure in 

a callback list gets called when the condition associated with the list is satisfied.

6.6.5 Critique

The X l l  Toolkit provides the basic functionality for building a variety of 

application user-interfaces. It is extensible and supportive of the independent 

development of new or extended user-interface tools. Also, it provides an ideal 

foundation to implement graphical user-interface development systems.

However, as with other user-interface toolkits, the X ll  Toolkit is hard to 

learn and hard to use directly to build an application’s user-interface. Figure

6.7 shows the code of an example application, Goodbye world, provided by 

McCormack et al. in their paper (1988).

Shown in Figure 6.8 is the example application. This application first 

opens and initializes the X server and creates the most-top widget, the "shell" 

widget of Shell class, by calling the function Xtinitialize. A Form widget, the 

"box" widget, is then created as a child of the shell. The "box" widget has two 

children, a "label" widget of class Label and a "command" widget of class 

Command. When a mouse button is clicked while the cursor is in the box of the
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/* include necessary include files */

void Callback(widget, clientData, callData)
Widget widget;
caddr-t clientData, callData;
{

(void) printff'Goodbye, cruel world"); 
exit(O);

}
int main(argc, argv) 
unsigned int argc; 
char **argv;
{

Widget toplevel, box, label, command;
Arg arg[25]; 
unsigned int n;

toplevel =  Xtlnitialisef'goodbye", "Goodbye", NULL, 0, &argc, argv);
box =  XtCreateManagedWidget("box", formWidgetClass, toplevel, (Arg *)NULL, 0);
n =  0;
XtsetArg(arg[n], XtNx, 10); n++;
Xt8etArg(arg[n], XtNy, 10); n++;
XtsetArg(arg[n], XtNlabel, "Goodbye, world"); n++;
label =  XtCreateManagedWidget("label", labelWidgetClass,box,arg,n);
n =  0;
XtsetArg(arg[n], XtNx, 10); n++;
XtsetArg(arg[nj, XtNy, 10); n++;
XtsetArg(arg[n], XtNlabel, "Click and die"); n++;
command =  XtCreateManagedWidget("command”,commandWidgetClass,box,arg,n); 
XtAddCallback(command, XtNcallback, Callback, NULL); 
XtRealiceWidget(toplevel);
XtMainLoop();

Figure 6.7 An implementation of the Goodbye world application 
with the X ll  Toolkit
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"command" widget, the callback procedure registered to the "command" widget 

will be called. This halts the interaction.

Goodbye world 

Click and die

Figure 6.8 The Goodbye world application

As shown in this example, the programmer m ust code the interface 

explicitly in the application program. Any change to the interface requires 

recompiling and relinking of the application. Moreover, the user-interface and 

the application functions are not clearly separated. The statements that link 

the user-interface to the application-specific functions are intertwined with the 

construction of the interface. Due to these problems, user-interfaces utilizing 

the X ll  Toolkit directly will be hard to implement and hard to maintain.

6.7 Case Study: GRAFIC/CE88

The graphics package GRAFIC/CE88 (Zhang et al., 1988a) is built on top 

of the X Window System version 10. It is a modified version of the GRAFIC 

package developed by Professor D. Anderson a t the School of Mechanical 

Engineering, Purdue University. It was developed as a  part of the LineGraph 

project (Zhang et al. 1988b). Several interaction techniques are provided in 

GRAFIC/CE88 including Pull-down Menus, Static Menus, Dialogue Windows, 

and List Processors.

{
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Internal interaction control is used in GRAFIC/CE88. In addition to the 

raw events th a t the event manager collects from the X Window server, there are 

several normalized events associated with each interaction technique. For 

example, the picking of an item in a Static Menu generates a 

STATICMENUPICK event.

Applications define their user-interface in resource files written in a simple 

description language instead of creating the user-interfaces by calling procedures 

of the GUI tools explicitly. However, the description language in 

GRAFIC/CE88 is only capable of specifying the static layout of user-interfaces, 

and thus it can only lead to limited independence of the user-interface code.

Another weakness of the interaction techniques in GRAFIC/CE88 is tha t 

their development is based on conventional programming method. Each 

technique implements a one-of-a-kind user-interface functionality. For example, 

a Dialogue Window can only have three types of items: message, entry, and 

notifier types. These interaction techniques provide certain fixed styles for user- 

computer interaction, and are not extendible.

6.8 OSF/M otif

6.8.1 Overview

The Open Software Foundation has recently released a product OSF/Motif 

(1990). The development of GUIDES has been performed with only limited 

knowledge about the details of OSF/Motif. W ith the current commercial release 

of Motif (1990), more details about this package are available. OSF/Motif is a 

graphical user-interface management system consisting of four major 

components:

1. A graphical user-interface toolkit. This toolkit provides a widget set based

on the X Windows (version 11) intrinsics and is similar to the X ll  toolkit.
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A window manager. This manager provides the capability for users to 

manipulate multiple applications simultaneously on the screen. It is highly 

customizable so that a user may redefine the window-manager’s user- 

interface and alter other aspects of window-related interactions.

A style guide. This guide describes the standard behavior and a set of 

conventions to ensure a consistent feel on multiple applications.

A user-interface language (UIL). The UIL is a specification language for 

describing the initial state of a user-interface for an application. It enables 

application developers to describe the presentation characteristics of 

application interface in a way independent of the actual application code.

In many aspects, the OSF/Motif toolkit is similar to the X ll  toolkit except 

tha t more widget classes are provided by Motif. Therefore, only the Motif UIL 

is reviewed here. A comparison of Motif and the GUIDES system developed in 

{ this work is made in Chapter 8. A detailed description of OSF/Motif may be

found in (Open Software Foundation, 1990).

6.8.2 The User-interface Language

To create the user-interface of an application with the UIL, the interface 

should be first specified in the user-interface language and stored in one or more 

UIL specification files. A UIL file can then be compiled by using the UIL 

compiler to generate a User-interface Definition (UID) file. UID files are bound 

with the application code at run time by calling functions of the Motif Resource 

Manager (MRM).

The Motif user-interface language is a sophisticated specification language. 

The main purpose of the language is to specify the objects (e.g., menus, buttons, 

and messages) which compose an interface, and to specify the functions to be 

(  called when the objects in the interface change in state due to user actions. It

3.

4.
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also has other convenient features such as string concatenation and definition of 

literal values which may be fetched by the application at run time.

An interface is specified in one or more UIL modules with one module 

containing the specification of the main window of the interface. A UIL module 

may be contained in one or more UIL files. A UIL module consists of a series 

sections denoted by the names of value, identifier, procedure, list, and object, 

and there can be any number of these sections. It may also contain directives 

allowing the contents of other UIL files to be included in the module. Figure 6.9 

shows a sample UIL module, hellomotif. Text tha t follows an exclamation mark, 

("!"), is a comment, and keywords of the UIL are printed in Bold font. This 

module is from (Open Software Foundation, 1990) and has been modified by the 

author to show additional features of the UEL in one example. The following 

sub-sections describe the major features of the UEL used for the definition of a 

UIL module. These features are illustrated with the hellomotif example.

6.8.2.1 Module Header and Header Clauses

The name of a module (hellomotif for this example) is declared in the 

module header following the module keyword. The module header may be 

followed by clauses specifying the version number, the case-sensitivity, etc. of 

this module. For this sample module, the version number is specified as ’vl.O’, 

and the UIL in this module is specified as case sensitive.

6.8.2.2 The Value Section

A value section consists of the keyword value followed by a number of 

value declarations in the form of value-name : value-expression. A number of 

value types are supported in the UIL such as integer, float, string, font, and
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!+
! A sample Motif module: hellomotif

module hellomotif ! module header and header clauses
version =  ’vl.O’ 
names =  case_sensitive 

value ! value section
button—x : 15; 
button_y : 60; 

identifier ! identifier section
calLdata;

procedure ! procedure section
hellomotif_button_activate(string) 

object ! object section
hellomotif_main : bulletin_board { 

controls {
labels hellomotif-label; 
push-button  hellomotif-button;

}; 
};

object ! object section
hellomotif-button : push -b u tton  { 

argum ents {
x =  button-x; 
y =  button_y;
labeLstring =  compound_string(’Hello’, separate=true) & ’Motif;

};
callbacks {

activate =  procedure hellomotif-button_activate(calLdata);
};

>;
object ! object section

hellomotif-label : label { 
argum ents {

labeLstring =  compound_Btring(’Press button once’, separate=true) & 
compouncLstringpto change label;’, separate=true) & 
’twice to exit.’;

}; 
};

Figure 6.9 A sample Motif UIL module

c
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color. After a value name is declared in a value section, it can be referred to in 

the module in any context where a value can be used. These values may also be 

fetched in the application code by calling MRM functions. In the sample 

module shown in Fig. 6.9, two values (i.e., button-X  and button—y) are declared.

6.8.2.3 The Identifier Section

Identifiers in the Motif UIL provide a mechanism to achieve run-time 

binding of data items (identifiers) in the application code to names referred to in 

a UIL module. The name of an identifier in a UIL module is declared in an 

identifier section which starts with the keyword identifier. In the sample 

module in Fig. 6.9, an identifier calL.data is declared. An identifier name may 

be referred to in the UIL module after it is declared in any appropriate context. 

An identifier usually represents the value or address of a data item in the 

application code. This value or address is bound with an identifier name in the 

UIL module at run time by calling functions of the Motif Resource Manager 

(MRM). This is discussed in more detail in Section 6.8.3.

6.8.2.4 The Procedure Section

The interface defined in a UIL module is bound with the functionality of 

the application a t run time by callback procedures. A typical callback 

procedure in Motif accepts three parameters: the identifier of the widget to 

which the callback is registered, the application-specific data (or the client-data), 

and the widget-specific data. The client-data may be a value of a UIL supported 

type, or an identifier to a callback procedure, and is specified in the UIL module. 

A callback procedure is represented in the UIL by a callback name, and the 

name is bound a t run time with the actual address of the callback procedure in
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the application code by calling functions of the MRM.

To refer the name of a callback procedure in an object definition, the 

name has to be declared in a procedure section. A procedure section starts with 

the keyword procedure and contains a number of callback procedure 

declarations. The type of the client-data to a callback procedure is specified in a 

procedure declaration by enclosing the type name in parentheses following the 

procedure name. In the sample UIL module, a procedure 

hellomotif-button—activate is declared with the client-data type as string.

S.8.2.5 The Object Section

Widget instances (Motif objects) are defined in object sections of a UIL 

module. Each object section defines one widget instance. It starts with the 

keyword object and contains a sequence of lists tha t define the attributes, 

children, and callback procedures for the instance. There are three object 

sections in Fig. 8.9 defining three widget instances: "hellomotif_main" of class 

bulletin-board, "hellomotif-button" of class push-button, and "hellomotif-label" 

of class label. The widget instance "hellomotif_main" is the main window of the 

hellomotif application and the parent widget of the other two widget instances.

The definition of a  widget instance may contain an argument list that 

starts with the keyword arguments. The attributes of the instance are specified 

in the list, and are used when the instance being created a t run time. The 

argument list in the widget "hellomotif-button" definition shown in Fig. 6.9 

contains three attributes: x, y and labeLstring.

Children of a widget instance are also widget instances of certain classes 

and are declared in the control list in the parent widget definition. A control 

list starts with the keyword controls and contains the declaration of each of the 

child widgets. Two child widgets are declared in the control list of
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"hellomotif—mam". The definition of the two child widgets are entered later in 

the UIL module. A child widget may also be defined in the control list so tha t it 

may not be referred to from outside of its parent widget’s definition.

In the callback list starting with the keyword callbacks and in the 

definition of a widget, callback procedures are associated with callback reasons 

and specified their client-data. These callbacks should be previously declared in 

the procedure section of the UIL module. A callback reason is related to an 

event or an event sequence th a t is meaningful to the widget instance being 

defined. The definition of the ,fhellomotif_button" widget shown in Fig. 6.9 

contains a callback list. In the callback list, the callback procedure 

hellomotif— button—activate is associated with the callback reason activate and is 

specified the client-data calL-data. call—data is an identifier tha t was declared 

previously in the identifier section.

6.8.3 The Motif Resource Manager

The Motif Resource Manager (MRM) is responsible for creating widgets at 

run time based on the widget definitions contained in UID files. The UID files 

are compiled forms of UIL specification files. The role of the MRM in an 

application is limited primarily to  widget creation. The MRM provides interface 

functions to initialize itself, to register callbacks and identifiers referred to in 

UIL files, and to create widget objects using the information in the UID files.

After a widget is created by the MRM according to the definition in a UID 

file, the MRM provides no further services. Ail the subsequent widget 

manipulations are done by using functions provided by the Motif Toolkit. 

Figure 6.10 shows the major steps in the application code to set up an interface 

with the UIL and the MRM (from Open Software Foundation, 1990).
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1. Initialization
. Initialize the MRM
. Register user-defined widget classes (if any) 
. Initialize the Motif Toolkit 
. Open UID hierarchy 
. Register names for the MRM

2. Creation
. Fetch the user-interface and create widgets

3. Realization
. Manage the top-level widget 
. Realize the top-level widget

Figure 6.10 Setting up a user-interface specified with UIL

6.8.3.1 Initialization

In the initialization step, the application program makes calls to the MRM 

and Motif Toolkit intrinsics functions to initialize the MRM and the Motif 

Toolkit, to open the UID hierarchy, and to register names of both callbacks and 

identifiers. The UID hierarchy is a set of UID files containing the widget 

definitions for the interface. The addresses of callback procedures and the value 

of identifiers (value or address of application data) are registered to the MRM 

with the corresponding names. This is required to resolve name (or symbolic) 

references in UID files to their run-time values.

6.8.3.2 Creation

In the creation step, the application makes calls to the MRM functions to 

fetch the user-interface. Fetching is a  combination of widget creation and child 

management. By a single call to a MRM function with the top-level widget and
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its parent as parameters, all widget instances in the widget tree specified in the 

UEL files below the top-level widget may be fetched.

6.8.3.3 Realization

The realization of a user-interface defined in UIL files is done in the same 

way as user-interface created directly using the Motif Toolkit.

6.8.3.4 Other Features

The MRM allows applications to defer fetching certain off-screen widgets 

until these widgets need to be displayed. This mechanism may be used to 

reduce the start up time for applications which use many widget instances in 

their interfaces. The MRM also provides functions for applications to fetch 

values defined in UIL files. This allows applications to use UEL files as 

repositories for programming variables to be used to specify the interfaces.
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CHAPTER 7 DESIGN ISSUES IN THE DEVELOPMENT OF GUIDES

In the preceding chapter, the current technologies of graphical user 

interface tools have been reviewed. In this chapter, an overview of the 

development of GUIDES, the Graphical User-Interface DEvelopment System for 

the SESDE, is presented. The usage of GUIDES will be presented in Chapter 8.

Herein, the justifications for the development of GUIDES are discussed 

first in Section 7.1. The basic requirements and the primary design decisions are 

presented in Sections 7.2 and 7.3 respectively. Finally, in Section 7.4, the 

three-dimensional graphics library, HOOPS, is briefly reviewed. GUIDES is 

built on top of this library.

7.1 Justification for the research

Although significant advancements have been made in the technology of 

graphical user-interface tools in recent years, the technology is still in its youth. 

During the time period th a t GUIDES has been developed and implemented (Fall 

1988 to Summer 1990), good user-interface development systems are either 

unavailable (such as the OSF/Motif), or not portable (such as the MacApp and 

HyperCard, which only operate on Macintosh computers, and the NextStep, 

which is only available for the NeXT computer).

More importantly, engineering applications often need systems providing 

both three-dimensional interactive graphics and graphical user interface tools 

working naturally and compatibly. It has been reported tha t X Windows will 

soon gain three-dimensional graphics by merging with PHIGS - the
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Programmer’s Hierarchical Interactive Graphics System (Langa, 1989). PHIGS 

implements an internationally accepted standard for three-dimensional graphics. 

It is not clear, however, when this package will be available. Furthermore, the 

PHIGS standard, like many standards, is evolving over time as it is enhanced 

with new features. It is not feasible to wait for systems to evolve tha t will 

facilitate optimally the development of interactive graphics applications.

Graphical user-interfaces are one of the most im portant features of 

Computer-Aided Engineering software. Research is needed to investigate and to 

develop improved methods for using three-dimensional graphics and user- 

interaction techniques for the next generation of engineering software. The 

SOCRATES project (Ingraffea et al., 1988) has performed pioneering work in 

this area. Several general interaction tools have been developed and utilized in 

the SOCRATES software, such as lists and numerical keypads. There are also 

many well-known interaction techniques (such as popup menus) th a t are 

provided by almost every windowing system. It is desirable to reproduce these 

tools in a  manner such tha t they can be: (1) implemented separately from any 

application-specific software; (2) utilized and handled consistently and easily in 

any engineering software; and (3) ported easily without any major dependence 

on the specific hardware or operating system.

The main goal of GUIDES is to facilitate the development of engineering 

* applications through rapid prototyping and testing of user-interfaces. Another 

goal is to provide a crucial layer between engineering applications software and 

evolving software technology. Since many adjustments to utilize new computer 

graphics technology can be made within GUIDES, applications utilizing this 

package will be more adaptable to  new computer technology. Changes in the 

graphical user-interface can be made with minimal effects on the application- 

specific code. Applications will be able to take advantage of advances in 

hardware, operating systems, and graphics libraries in a  more effective way.

f
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To this end, existing GUI systems such as the Macintosh GUIs and the X I1 

toolkits have been carefully studied. Attempts have been made to integrate 

their best features and to avoid their weaknesses in the design of GUIDES. 

These aspects are discussed in the following sections.

7.2 Basic Requirements

The following basic requirements have been established for GUIDES:

1. GUIDES should lead to a better separation between the user interface and

application-specific components.

2. GUIDES should not force applications to follow any specific programming

style or programming language.

3. GUIDES should provide a reasonable set of interaction techniques. Also, it

should be extensible such tha t it supports the creation of new interaction 

techniques.

4. GUIDES should work with a three-dimensional graphics package naturally

and compatibly.

5. GUIDES should be easy to use by both expert and non-expert

programmers.

6. GUIDES should be portable. It should not be restricted to certain

hardware or operating systems.

According to these requirements, several design decisions have been made 

as described in the next section.
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7.3 Design Decisions

7.3.1 Black-Box versus W hite-Box Framework

As discussed in Section 6.3.2, the strength of a white-box framework is its 

flexibility. The interaction techniques defined in a white-box framework can be 

tailored to suit the particular interface styles o f different applications. The 

weakness is that intim ate knowledge o f the underlying implementation is 

required to use a white-box framework. Prim arily the white-box framework is 

useful only for expert programmers.

In contrast, the strength of a black-box framework is ease of use. No 

knowledge of the underlying implementation is required. Also, the use of a 

description language to specify the user-interface of an application leads to a 

better separation of the interface and application-specific components. The 

weakness is tha t applications can only be provided a limited number of types of 

interaction techniques to build their own interface. Application programmers 

also need to learn the description language in order to specify the user-interface.

In a university environment, the potential users of GUIDES are students 

and faculty in engineering areas. These users are experts in certain application 

areas, but typically they are not experts in programming. In fact, they need not 

be. However, computation related research and instruction are gradually 

becoming more and more software intensive. Therefore, software such as 

GUIDES is essential for the development of graphical user-interfaces in a 

university setting.

Ease-of-use is considered to be more im portant than flexibility in the 

design of GUIDES. Therefore, a black-box framework has been chosen for the 

design. To avoid the weaknesses associated with the black-box approach, a 

reasonable set of interaction techniques is provided by the framework of 

GUIDES. These techniques satisfy the interaction requirements for most 

applications. Whenever a  particular new interaction technique is needed, it can



www.manaraa.com

be developed by GUIDES programmers based on the existing techniques of 

GUIDES. The syntax of the GUIDES description language is simple and clearly 

defined. However, a construction set should be provided to help application 

programmers construct the user-interface interactively. Such a construction set 

will be developed in the future work on GUIDES and is not included in the 

present work.

7.3.2 Windowing-System versus Graphics-System Basis

To obtain a system which can handle both three-dimensional interactive 

graphics and interactive user-interface tools naturally and compatibly, there are 

three choices: (l) developing a user-interface development system based on an 

existing three-dimensional graphics package, (2) developing a three-dimensional 

graphics package for an existing user-interface development system, and (3) 

utilizing both an existing three-dimensional graphics package as well as an 

existing user-interface system. The third choice is not taken because it is 

difficult, if not impossible, to make an existing graphics package and an existing 

user-interface system work together well. The decision is therefore between the 

first two choices. The technology for three-dimensional graphics systems is more 

m ature than tha t for user-interface development systems. In fact, several 

sophisticated three-dimensional graphics packages are available commercially: 

HOOPS (Wiegand, 1088) by Ithaca Software, several implementations of the 

PHIGS (Brown, 1085), and others. GUIDES is built on top of HOOPS such that 

applications utilizing GUIDES can take advantage of both three-dimensional 

interactive graphics and interactive user-interface tools naturally and 

compatibly.

Moreover, building GUIDES on the HOOPS commercial graphics package 

has another important benefit. HOOPS is supported on equipments ranging 

from the IBM /PC/A T and Apple Macintosh II to high-end workstations such as
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the Silicon Graphics IRIS. Therefore, GUIDES does not have to interface to any 

specific windowing system by itself. Instead, its interface with different 

windowing systems is via HOOPS. GUIDES can be ported to any specific 

hardware and run on any operating system where HOOPS is available. 

However, GUIDES is not heavily dependent on HOOPS. Carefully defined 

policies are enforced in the implementation of GUIDES to minimize the 

dependency of the system on HOOPS. GUIDES could be ported with relative 

ease to another graphics package which has similar functionality to HOOPS 

(e.g., a PHIGS package).

7.3.3 Design Methodology

To achieve the goals of reusability and extendibility, an object-oriented 

approach is used to design the interaction techniques of GUIDES. The 

interaction techniques of GUIDES are referred to either as agents or graphical 

utilities. Agents provide generic user-interface tool abstractions, such as 

Buttons, Menus, and Dialogue Windows. Graphical utilities are tools designed to 

accomplish specific tasks such as drawing and managing X-Y plots. Graphical 

utilities utilize agents to accomplish their functionality.

Agents are identified as the objects in the design of GUIDES. An agent is 

a software object providing an interaction technique abstraction. The GUIDES 

agents will be discussed in more detail in Chapter 8. Design and 

implementation details of GUIDES agents have been reported in (Zhang et al, 

1990).

It should be mentioned tha t although GUIDES is an object-oriented 

design, applications are not forced to use the same design methodology. Agents 

and their methods are enveloped by groups of application-interface functions 

which are conventional functions. Because the agent instances constituting a 

user-interface are defined by using the description language of GUIDES, no
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application interface function is needed to create agent instances "on the fly." 

This greatly reduces the number of application interface functions. The 

application interface functions o f the agents are used for editing agent instances, 

for configuring agent instances, and for retrieving event information from agent 

instances.

7.3.4 Internal versus External Control

External control (i.e., control by GUIDES) has obvious advantages over 

internal control because application programmers are relieved from handling the 

interaction process. Therefore, the complexity of application code is reduced. 

However, in certain cases, internal control and mixed-control may lead to a 

higher run-time efficiency. Moreover, the internal control approach shows the 

event handling process explicitly in the application code. This may be 

im portant to accomplish certain interactive techniques such as rubber-banding a 

line. Therefore, even though external control is often the best approach, both 

external control and internal control are supported.

For external control, the communication between GUIDES and 

applications is via callbacks. When an application does not register callbacks to 

an agent instance, control is returned to the application when th a t instance is 

invoked. This results in internal control. When the application does not 

register callbacks to GUIDES a t all, the application would use internal control 

completely. If callbacks are registered for some instances and are not registered 

for others, this results in mixed control. Another form of mixed control is that 

callback functions can call an interface function to obtain the next event from 

the event queue. This type of mixed control is also available in GUIDES.

(
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7.3.5 Agent Semantics

As discussed in Section 6.6.3, the X I1 Toolkit provides the capability for 

its applications to override the default semantics of X I1 Widgets. This leads to 

flexibility in customizing a X I1 Widget for different interaction techniques. 

However, it is not a trivial task to take advantage of this flexibility, and the 

price paid for this flexibility is complexity. Moreover, it is not necessary to 

override the semantics of interaction techniques if these semantics are flexible 

enough, and if there exists a reasonable set of interaction techniques to fit the 

requirements of most applications.

The semantics of GUIDES agents are fixed. An agent behaves as specified 

by its class protocol. This is true whether it is used as a standalone interaction 

technique or as a component of an interaction technique. However, to provide 

flexibility in customizing agents to  build complex interaction techniques, slots 

are provided th a t clients of agents can fill in. This aspect is described bellow.

Agents tha t accept user input can be displayed in more than one mode. 

They can change their different mode in response to associated user actions. 

Callback lists are maintained by the agent instances for each mode change. Each 

agent instance maintains one or more callback lists. These lists are identified by 

a specific name and are defined in the class protocol of th a t agent. The callback 

lists of an agent instance, in fact, are pre-defined slots by which the semantics of 

the agent are connected to the application functionality or the semantics of 

other agents.

A callback list of an agent instance is associated with a certain event or a 

set of events which cause a change in the display mode of the instance. A list 

may contain one or more callbacks or it may be empty. Once an appropriate 

event related to the agent instance occurs, the instance changes its mode, and 

then calls the callbacks in the list associated with tha t event, if the list is not 

empty.
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For example, depressing a mouse button while the mouse pointer is in a 

Button  agent instance will cause the Button to change to the selecting mode. 

The callbacks in the selecting callback list will be called if there are any. The 

Button  does not care who registers the selecting callbacks to it. If an application 

registers the callback, the callback will perform the application specific 

functionality. If another agent instance, which the Button is a component of, 

registers the callback, the callback will accomplish the semantics of that 

instance.

Therefore, although GUIDES agents have fixed semantics, they are still 

flexible enough to be either used as standalone interaction techniques or 

connected by the callback mechanism to form more complicated interaction 

techniques.

7.3.6 Language Binding

The C language is clearly better than FORTRAN for interactive graphics 

applications. However, since FORTRAN is still the major language for 

engineering applications, the application interface functions of GUIDES should 

be made callable from both C and FORTRAN. In order to achieve this, data 

structures or pointers to  data structures are avoided as arguments to application 

interface routines unless other functions which accomplish the same 

functionality without pointers or data structures are provided for FORTRAN 

programs. Returned values from all interface functions are integers. However, a 

complete FORTRAN interface has not been made available in the present work 

on GUIDES.

(
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7.4 The HOOPS Graphics Library

HOOPS (the Hierarchical Object-Oriented Picture System), which is 

marketed by Ithaca Software (Wiegand, 1988), is a powerful and portable 

three-dimensional interactive graphics package. Since versions of HOOPS are 

supported by Ithaca Software under many operating systems such as DOS, the 

M acintosh operating system , UNIX, and VMS, an application utilizing HOOPS 

should port readily to any of these systems. A t present, several HOOPS-based 

three-dimensional CAD system s are under development (Kliewer, 1989).

Because graphics applications must maintain a  picture database storing 

the drawing primitives and their drawing attributes, HOOPS is first a database 

system. It stores information about which objects to draw, where they should 

be displayed, and how they should be rendered. The basic unit in the database 

is called a segment. A segment is a collection of attributes, geometry, and other 

segments, grouped together as an object. Geometry refers to drawing primitives 

including lines, polygons, text, and markers, which are the basic building blocks 

for a picture. A ttributes (e.g., colors, patterns, and projection methods, etc.) 

describe how to display the drawing primitives.

Each segment may also contain other segments, called subsegments of that 

segment. This results in a hierarchical structure. A t the top of the hierarchy, 

there is a special segment known as fPtcture which refers to the current 

graphics device. Any segments under fPicture will be automatically displayed 

or redisplayed unless their visibility is turned off. Each segment can be 

associated with a window where the drawing primitives in that segment are 

displayed (however, a segment is not required to  contain a window). The 

window of the fPicture segment corresponds to the full screen by default. The 

window of a subsegment is described as a portion of the window of its parent. A 

segment along with its primitives and subsegments can be manipulated as a 

whole (such as in scaling and resizing). The attributes of a segment can be 

inherited by its subsegments such tha t any change in an attribute of a segment
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will affect all its subsegments unless the attributes are also specified for the 

subsegment.

Another important feature of HOOPS is the flnclude Library.  This library 

is a separate branch of the HOOPS segm ent tree. It is not visible, and segments 

defined under it will not be displayed. However, these segm ents can be included 

one or more times by segments under ?Picture. Therefore, the objects defined 

in segments under the flnclude L ibrary  can be displayed in different views 

sim ultaneously w ithout duplicating the definition o f these objects. Figure 7.1 

shows the hierarchical structure for an application which displays a car in two 

views.

| fP ic tu re

m e n u

j f ln c lu d e  L ib ra ry  |
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Figure 7.1 Hierarchical structure of HOOPS segments for an application 
which displays a car in two views

HOOPS provides only limited support for building graphical user 

interfaces. It identifies five basic types of raw events as listed in Figure 7.2. 

Also, it maintains an event queue. It is worthy to note here th a t a  long integer, 

called the user value, can be stored within a segment. This value can be 

retrieved from HOOPS when an event occurs in th a t segment. This allows 

HOOPS applications to relate a specific piece of application data or a specific 

application procedure to a  segment.
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E v e n t  T y p e C ircu m sta n ce

Wakeup Event 

Button Event 

Location Events

"v"

"O"

Selection Events
M II

V

”0"

String Event

The process has slept for a specific time or until a certain event occurs.

A  key on the keyboard is typed.

Location events are detected in raw device coordinates.

Mouse just went from "no button down" to "at least one button down" 

Mouse just went from "one or more button down" to "no button down". 

Location of mouse pointer has changed with one or more button down. 

Location of mouse pointer has changed with all buttons down.

Selection events are detected in window coordinates of segments.

Mouse just went from "no button down" to "at least one button down" 

Mouse just went from "one or more button down" to "no button down". 

Location of mouse pointer has changed with one or more button down. 

Location of mouse pointer has changed with all buttons down.

A  text string ended with a carriage return is typed.

Figure 7.2 Raw events identified by HOOPS
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High-level interaction techniques are not provided by HOOPS. 

Applications not using GUIDES have to build interaction techniques and handle 

user-application interactions explicitly in their code. For example, the segment 

"menu" in the application shown in Figure 7.1 would contain the user-interface 

techniques. It would represent a static menu which is hard-coded in the 

application. In many existing HOOPS applications, a large percentage of code 

has to be devoted for building interaction techniques (such as static menus) and 

handling interactions explicitly. As a result, duplication of code within an 

individual program, and among programs associated with different projects 

cannot be avoided. The user-interfaces code implemented directly with HOOPS 

is hard to design, modify, and maintain. GUIDES solves these problems.



www.manaraa.com

141

t
CHAPTER 8 DESCRIPTION OF GUIDES

An overview of the development of GUIDES is presented in the preceding 

chapter. In this chapter, major features and use of GUIDES are presented. The 

architecture of GUIDES is described in Section 8.1. The GUIDES Event 

Manager and Callback Manager are discussed in Sections 8.2 and 8.3. GUIDES 

Agents and Graphical Utilities are described in Sections 8.4 and 8.5. The 

GUIDES Description Language is outlined in Section 8.6, and a complete 

example application is illustrated. Finally, a comparison of GUIDES and 

OSF/M otif is made in Section 8.7. More detailed documentation on the use of 

GUIDES is given in the GUIDES Reference Manual (White et al., 1990), and 

design and implementation details are reported in (Zhang et al., 1990).

8.1 Architecture of the System

GUIDES is composed of four major components: the Description File 

Parser, the Callback Manager, Interaction Techniques (agents and graphical 

utilities), and the Event Manager. When external control is used, an application 

utilizing GUIDES will consist of three parts: (1) Callback Procedures which 

implement the functionality of the application, (2) Description Files which 

present the specification of the user-interface, and (3) an Application 

Initialization component which initializes GUIDES and the application and 

starts the interaction process. Figure 8.1 shows this conceptual model of 

GUIDES and the application, where solid lines with arrows pointing from one 

component to another indicate the functions in tha t component calling functions 

in the other component.
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Application
Initialization

Description
Files

Description 
File Parser

Callback
Procedures

Interaction
Techniques

Event Manager

HOOPS Graphics Library

Figure 8.1 The conceptual model of GUIDES

The Callback Manager maintains a list of callback procedures registered 

by both applications and interaction techniques. A callback procedure may be 

represented by a callback name in the description file. The Description File 

Parser parses description files passed to it by the Application Initialization 

component. According to the specification in the description files, the Parser 

creates the interaction techniques which the user interface is composed of, and 

establishes the connections between interaction techniques and between the 

user-interface and the application. The Event Manager reads raw events from 

HOOPS, interprets the raw events, and then invokes the appropriate callback 

procedures in either the interaction techniques or the application program. 

These components are discussed in more detail in the following sections.
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8.2 Callback Manager

Callback functions bind the Event Manager, the agent instances, and the 

application code together forming a complete mechanism for handling 

interactions between the user and the application program. Callback functions 

used by GUIDES must be defined as functions returning an integer. The integer 

value returned must be either one of the two pre-defined GUIDES constants 

GS-CONTINUE  or G S-EXIT. GS-CONTINUE  should be returned if the 

application wishes for GUIDES to continue the interaction control, and 

G S-E X IT  should be returned if the interaction control should be returned to the 

application. The general form of a callback function is shown in Figure 8.2.

(

In Fig. 8.2, callback is the name of the callback function, clicnt-data is the 

client data which represents or may be used to access the data in the application 

code required by the callback function. The client data is registered to GUIDES 

together with the associated callback function and is passed to the callback 

function when the function is invoked. p_event-record is a pointer to the record 

of the event by which the callback function is being invoked. The callback 

function may obtain detailed information about the event by calling GUIDES 

interface functions with this pointer as an argument.

int
callbackfclient—data, p-event-record)  
Gs_ClientData clicnt-data;
GsJEvent p-event-record;
{

(implementation detaili)
}

Figure 8.2 The form of GUIDES callback functions

<
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In GUIDES, a callback function pointer and its associated client data are 

identified by a callback name. The callback name is a string which may or may 

not be the same as the name of the callback function. As a result, a particular 

callback function in the application-specific code may correspond to one or more 

callback names (and thus one or more different callbacks), and each of these 

different callbacks may be associated with different client data.

An application must register its callbacks to GUIDES at run time. A 

record is maintained by GUIDES for each callback registered to it. This record 

consists of three pieces of information: the callback name, the pointer to the 

callback function, and the client data. This record is a data structure which is 

used by the application when registering callback records to GUIDES. The 

callback records are maintained in a callback table. The Callback Manager 

provides interface functions for installing callback records to the table, for 

redefining a callback, and for looking up a callback record by its name from the 

table.

A callback is associated with a certain event in an Application Window 

agent (see Section 8.4.6.1 for a description of the Application Window Agent) by 

calling interface functions of the Callback Manager. A callback is associated 

with a certain event in an agent other than Application Window by referring the 

callback name in the definition of the agent in a  description file.

8.3 Event Manager

The Event Manager is an essential component of GUIDES. It manages the 

communications between GUIDES agents and HOOPS as well as 

communications between the application and HOOPS. It does not distinguish 

between the type of its clients. The clients (i.e. the code units which use the 

Event Manager) include both interaction techniques and application-specific 

components. Both clients are treated in a same manner.
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The major functions of the Event Manager are: (1) to expand the number 

of event types provided by HOOPS to include a number of normalized event 

types, (2) to manage the asynchronous queuing of events, and (3) to process the 

callbacks associated with any particular event. Event manager interface 

functions are provided for defining the types of events that the application is 

interested in for any segment of the HOOPS database, for extracting 

information about a current event, and for saving an event sequence to a file or 

reading and responding to a series of events from a file.

8.3.1 Processing of Raw Events

The Event Manager is invoked in an application code by calling the 

function GS—EventManager. The first task of the Event Manager is to dequeue 

and interpret raw events generated by user actions known to HOOPS. The 

Event Manager interprets the raw events and generates normalized events which 

are higher level than the raw events. These normalized events are called basic 

GUIDES events. Figure 8.3 lists the 13 basic GUIDES events identified by the 

Event Manager. Several of the basic GUIDES events are actually identical to 

particular HOOPS events. The Event Manager also queries and saves into an 

event record whatever information is available from HOOPS about the current 

basic event (such as the segment in which the event has occurred).

To be notified of the occurrence of certain basic events within their 

segments, clients must inform the Event Manager of the basic events they are 

interested in. They can also register callback functions associated with these 

events. The Event Manager maintains a segment-events list and stores the 

events each HOOPS segment is interested in and the callbacks associated with 

the segments. Segment user values are employed as indices of corresponding 

entries in the list for fast processing. Any event the clients are not interested in 

will be discarded by the Event Manager without notifying the clients.
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Event Type Circumstance

PAUSE

KEY-STRIKE
BUTTON-DOWN
BUTTON-UP
BUTTON-UP-MOTION
BUTTONJDOWN-MOTION
BUTTON_DOWN_STILL
BUTTON-CLICK
BUTTON-DOWNJEXIT

BUTTON_DOWN_ENTER

BUTTON_UP_EXIT

BUTTON-UP-ENTER

STRING-INPUT

The process has slept for a specific time 
or until a certain event occurs.
A key on the keyboard is typed.
A mouse button is pressed.
A mouse button is released.
Mouse pointer is moved with all buttons released.
Mouse pointer is moved with at least one button pressed.
No further event is detected after a BUTTON-DOWN.
A BUTTON-DOWN followed by a BUTTON-UP event.
Mouse pointer is moved out the current segment/window 
with a button pressed.
Mouse pointer is moved into a segment/window 
with a button pressed.
Mouse pointer is moved out the current segment/window 
with all buttons released.
Mouse pointer is moved into a segment/window 
with all buttons released.
A text string ended with a carriage return is typed.

Figure 8.3 Basic events of GUIDES
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8.3.2 Handling of Basic GUIDES Events

The second task of the Event Manager is to handle the processing 

associated with the basic GUIDES events tha t clients are interested in. If a 

client is interested in the current event, the Event Manager must first check if a 

callback function has been registered with the event.

If no callback is registered, the Event Manager returns from the 

GS-EventManager function to the application. A pointer to the current event 

record, generated by the Event Manager in its first task, is returned through the 

parameter list of GS-EventManager. The event information stored in the 

current event record can be retrieved by clients through interface functions of 

the Event Manager. The application, of course, can call GS—EventManager 

again to pass the interaction control back to the Event Manager.

If a callback function has been registered with the current event, the 

Event Manager calls the function and passes a pointer to current event record 

and the client data as arguments. A callback function is expected to return 

either of the flags GS-CONTINUE  or G S-E X IT  as discussed in Section 8.2. If 

GS-CONTINUE  is returned, the Event Manager will continue its task to 

dequeue and process the next event from HOOPS. If G S-E XIT  is returned, the 

Event Manager will return the interaction control to the caller (i.e., the 

application). In this case the Event Manager expects the callback function to 

store its associated event record in an event register, a block of memory 

accessible by both the Event Manager and its clients. Although the Event 

Manager does not distinguish its clients, GUIDES does not allow application 

callback functions to access the event register. Only the agents know and have 

the access to the event register.
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8.3.3 The Event Register

If the event register is not empty when the flag G S-E X IT  is returned from 

a callback function, the Event Manager will pass the event information in the 

register to the application as the current event record. If the event register is 

empty, the event record generated by the Event Manager (which contains the 

information about the current event viewed by the Event Manager) will be 

stored. A pointer to the current event record is passed back to the application 

via a parameter of GS-EventManager.

Only the clients who are GUIDES agents have any knowledge of the event 

register. The event register is hidden from actual applications. Each type of 

agent may generate a particular type of Agent Event and a particular type of 

event record. A typical example is tha t a Static Menu may generate a 

STATICMENU_EVENT when a mouse button is clicked while the mouse 

pointer is inside an item of the menu. The event record generated by the Static 

Menu stores the event identifier, STATICMENU—EVENT, together with the 

name of the Static Menu instance and the identifier of the item in the menu just 

picked. The Static Menu agent puts its own event record in the event register 

and returns G S-E XIT  to the Event Manager upon certain conditions. These 

conditions depend on the particular semantics of the agent. The agent 

semantics are specified in detail in the GUIDES Reference Manual (White et al., 

1090). The application can retrieve event information generated by an agent 

only through application interface functions provided by the class of tha t agent.

8.3.4 Grabbing of Events

In some situations, events need to be grabbed. In other words, incoming 

events should be sent only to a particular set of segments. A typical example is 

tha t, when a Dialogue Window becomes active, events need to be grabbed to the 

segments of the agent instances in the Dialogue Window. The dialogue session
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must be completed before any other interaction can proceed. The Event 

Manager maintains a stack containing the set of segments tha t can accept events 

at a certain time. Each time an event grabbing process is invoked, an entry is 

pushed on top of the stack. This entry contains a new set of segments that 

events should be grabbed to. When an event grabbing process is finished, the 

top entry in the stack is popped (removed) from the stack. The Event Manager 

sends events only to the segments listed in the top entry of the stack.

8.3.5 Queueing of Events from a File

Another feature of the Event Manager is tha t it can store a sequence of 

events to a file. Also it can process a sequence of events stored in a file, just as 

if those events were generated by the end-user’s action and dequeued from 

HOOPS. This capability enables: (1) automatic demonstration of an application 

program, i.e., an application program can step through a certain sequence 

previously performed by a user; and (2) an autom ated type of command driven 

interface, i.e., once a user has issued a certain command sequence once, he can 

save the corresponding sequence of events to a file, and whenever it is desired to 

execute that sequence again, the file can be utilized to automatically perform the 

sequence.

8.4 GUIDES Agents

The basic elements of which GUIDES is composed are referred to as 

agents. An agent is a combination of a window displayed on the screen at a 

certain time, and its associated input and output semantics. Some agents do not 

have their own I/O  semantics and are just used as containers for other agent 

instances. An individual interaction technique can be constructed by an 

individual agent instance or a combination of several instances.
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8.4.1 Agent Classes and Agent Groups

Agents are identified as objects providing user-interface abstractions. An 

agent is composed of its private data and its private and public functions which 

manipulate the data. Each type of agent is identified as an agent class. An 

agent class serves as a "template" by which the agent instances (i.e., the objects) 

corresponding to tha t class can be created. Agent instances of the same class 

have a common set of properties and possess the same set of methods.

There are also abstract classes in the design of GUIDES. Abstract classes 

can never have any instances. They are used only for building the inheritance 

hierarchy. There are three abstract classes in GUIDES: the Basic class, the 

Composite class, and the Restricted Composite class. All agent classes are 

derived from a particular abstract class.

The hierarchical inheritance structure of GUIDES is shown in Figure 8.4. 

The agent classes shown in this figure are those currently developed in the 

present work. Additional agent classes may be developed in future work.

Agent classes derived directly from the same abstract class are said to 

belong to the same agent group. Therefore, there are also three agent groups in 

the design of GUIDES. These are the simple agent group, the composite group, 

and the restricted composite group.

8.4.1.1 Simple Agent Group

Agents in the simple agent group are derived directly from the Basic 

abstract class. These agents are used to accomplish the most basic functions for 

building user-interfaces. This group contains the following classes: Message, 

Button, Entry, Toggle, and Application Window. These agent classes are 

described further in Section 8.4.6.1.
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|_Basic_ U K  Messag«^__

Button

Entry 1

^Toggle
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Figure 8.4 Agent class inheritance hierarchy of GUIDES
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8.4.1.2 Composite Agent Group

Composite agent classes are derived from the Composite abstract class, 

which is derived in turn from the Basic abstract class. Composite agents are 

simply containers to compose one or more simple, composite, or restricted 

composite agent instances as a unit which can be defined and manipulated as a 

whole. A composite agent instance is called the parent of the instances of which 

it is composed. The agent instances combined to make a composite instance are 

referred to as the children of the composite instance, and are said to be 

instanced by the composite instance. Three agent classes belong to this group: 

Form, Root and Dialogue Window. These agent classes are described further in 

Section 8.4.6.2.

8.4.1.3 Restricted Composite Agent Group

Agents of the restricted composite group are derived from the Restricted 

Composite abstract class, which is derived in turn from the Composite abstract 

class. The following agent classes belong to the restricted composite group: 

Labeled Entry, Notifier, Choice, Static Menu, Popup Menu, List Column, and 

List. These agent classes are described further in Section 8.4.6.3

Restricted composite agents are special types of composite agents in that:

1. Component instances of a restricted composite instance are restricted to 

certain agent classes and are created by the restricted composite instance. 

Conversely, the children of a composite instance can be of any agent class, 

and the composite instance does not create its children. For example, a 

Static Menu is a restricted composite agent built from one or more Button  

instances referred to as the items of the Static Menu, and the Static Menu 

creates these Button  instances.
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2. The geometry of the component agent instances (location and size) within 

a restricted composite instance are managed by the restricted composite 

agent, whereas the geometry of the children of a composite agent instance 

must be explicitly specified when they are instanced. For example, the 

Buttons in a Static Menu instance will be packed in the window of the 

Static Menu with the same size, and in the form of a column, row, or two- 

dimensional array.

8.4.2 Agent Composition

Actual agent instances created in a user-interface are linked together to 

form a hierarchical tree structure of agent composition relationships. At the top 

of the tree is an object of the Root agent class derived from the Form  agent 

class. The Root object is the parent of all the agent instances defined in the 

application interface.

There are two general rules in the design of GUIDES for building 

composite agent instances. The first rule is tha t a composite agent instance 

must hold a list of pointers to its children so tha t it can send messages to them. 

However, the children generally should know nothing about their parent. The 

second rule is tha t a composite agent instance does not have any control over 

the appearance and I/O  semantics of its children. The above two rules allow 

standardization of the connections between parents and children. The 

communication between a parent instance and its children is by sending 

messages. This communication is flexible such that: (1) it should be easy to 

derive other composite agent instances; and (2) the children of composite agent 

instances can be children of other composite instances, or an agent instance may 

have multiple parents.

The rules for building composite agent instances are also valid for building 

restricted composite instances. However, since a restricted composite instance



www.manaraa.com

154

creates and manages the geometry of its own children, it may register its own 

functions as callbacks to its children to accomplish its own I/O  semantics. 

These callback functions would be called during interaction to perform the 

functionality of the composite instance. Since a restricted composite instance 

can install its own callbacks to its children, the children of restricted composite 

instances cannot be a child of any other agent instance.

The compositing hierarchy for the agent instances should not be confused 

with the inheritance hierarchy for the abstract and agent classes as shown in 

Figure 8.4. A composite agent instance is composed of a group of agent 

instances, each of which constitutes a part of the composite instance. The 

composite instance is the parent of the agent instances (objects) tha t are its 

children. It represents the children as a group such th a t the group can be 

manipulated as a whole. The parent object and each of the children objects 

possess the properties and methods of their own respective classes. All of the 

objects inherit their properties and methods from the base classes of their class.

8.4.3 States of Agent Instances

An agent instance may exist in any one of the following four states:

1. Created state: The agent instance has been defined.

2. Realized state: The agent instance has been instanced by at least one other 

agent instance.

3. Mapped state: The window of the agent instance is being displayed on the 

screen, and the instance is ready to accept events.

4. Active state: The agent instance has received an event and the interaction 

between the user and the instance is in progress.

(
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Generally, an agent instance m ust be created before it can be realized, it must 

be realized before it can be mapped, and it must be mapped before it can be 

active.

W ith the exception of the R oot  agent instance, there is no limit to the 

number of agent instances that can be utilized by an application to build its 

user-interface. However, an application has only one R o o t  agent instance. This 

instance is autom atically created and mapped by GUIDES during the 

initialization stage.

8.4.3.1 Creation of an Agent Instance

An agent instance can be created in one of two ways: (1) it may be defined 

explicitly in a description file; or (2) it may be created as a child of any agent 

instance belonging to the restricted composite group.

8.4.3.2 Realization of an Agent Instance

The location and size of an agent instance’s window are specified in terms 

of the parent’s window coordinates a t the realization stage. If an agent instance 

is created by its parent (or the parent is of a restricted composite agent class), it 

can have only one parent and can be realized only by its parent. If an agent 

instance is defined explicitly in a  description file, it may be realized (or 

instanced) by one or more composite agent instances. Thus, such an agent 

instance may becomes a child of any composite agent instance which realizes it, 

and it may have multiple parent. However, it can be displayed on the screen in 

only one of its parent’s windows a t any one time. Each of its parents holds the 

location and size of the instance in the parent’s window and assigns the location 

and size to the instance when it is mapped.
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8.4.3.3 Mapping of an Agent Instance

An agent instance may or may not be mapped together with its parent. 

Agent instances of the composite group attem pt to map each of their children 

when they are mapped unless a child is specified as "not mapped with its 

parent". If an agent instance is specified as "not mapped with its parent", it can 

be mapped either by: (1) specifying that it is to be mapped when a selection 

occurs within another agent instance, or (2) by the application explicitly calling 

a GUIDES interface function to do so.

A mapped agent instance of the restricted composite group decides for 

each of its children individually when the child should be mapped. In other 

words, the children of a restricted composite agent instance do not have to be 

mapped together with their parent. When a composite or restricted composite 

agent instance is unmapped, all its children are unmapped with it.

8.4.3.4 Activation of an Agent Instance

A mapped agent instance is ready to accept events. It is usually placed in 

an active state when the cursor enters the window of the agent instance. An 

agent instance can also be activated by other means if such a means is defined 

for the particular agent class. Most agent instances do not have to do anything 

special when they are in an active state. However, some instances such as 

Dialogue Windows grab events when they are in an active state.

8.4.4 Agent Attributes

There are two types of attributes of agent instances: (1) appearance 

attributes, which specify the appearance of an agent instance when it is 

displayed on screen, and (2) behavior attributes, which specify the behavior of
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an agent instance such as the I/O  semantics.

To handle the agent appearance attributes with relative ease, and to 

provide a capability to utilize a pre-defined appearance for certain agents, the 

concept of style is employed. A style in general is a combination of display 

attributes and drawing primitives. Several standard styles are provided by 

GUIDES, and applications are allowed to customize these standard styles. Thus, 

a style may be used as an attribute for agent instances.

In GUIDES, the appearance and behavior attributes of agent instances are 

referred to in general as agent resources. Agent resources may be specified for 

an agent instance during its creation and at any time after it is created. A 

resource consists of two pieces of information, the resource name and the 

resource value. A resource name is a pre-defined name which serves as the 

identifier of the resource. The resource value can be any type of data, such as 

string, integer, or float. The type of the resource value is determined uniquely 

by the associated resource name. In general, if an agent does not recognize a 

resource tha t is specified for one of its instances, it will ju st ignore the resource.

An agent instance interprets its resources in the following order, from 

lowest to highest precedence:

1. General default resources for all agent classes;

2. Class default resources for the agent’s class;

3. Resources specified by the parent of the agent instance, if the agent 

instance is created by its parent;

4. Resource assignment statements in a description file, if a way for doing so 

has been defined for the agent.
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8.4.5 Agent Semantics

An agent behaves as specified by the general rules discussed in this section 

as well as the rules defined by its class. This is true whether the agent is used as 

a standalone user-interface tool or as a component of a user-interface tool.

A mapped agent instance may have up to three display modes if the agent 

accepts user input. Namely, these modes are the normal mode, the previewing 

mode, and the selecting mode. An agent instance can change its mode in 

response to related event. However, not all agent instances of any class has all 

these three modes, and the events that cause an agent instance to change from a 

certain mode to another may not be the same for different agent classes. The 

relationships between agent mode changes and events depend on the semantics 

of agent classes, which, however, are fixed for each agent class.

Callback lists are defined for all agent instances. In general, a callback list 

is associated with each mode change as well as each change to a mapped or 

unmapped state. A callback list can contain one or more callbacks, or it can be 

empty. The application as well as other agent instances can register callbacks to 

these lists. The callback lists of an agent are pre-defined slots by which the 

semantics of the agent are connected to the application functionality or the 

semantics of other agents.

Two callback lists are common to agents of any type. These are the lists 

associated with mapped and unmapped state changes, and they are referred to 

as the mapping and unmapping lists. Callbacks in the mapping list of an agent 

instance will be called when the instance is mapped, and callbacks in the 

unmapping list will be called when it is unmapped.

There are five types of callback lists associated with agent mode changes. 

These callback lists and their associated mode changes are listed in Table 8.1. 

When the appropriate event or events occur in the window of the agent 

instance, the agent instance changes its mode, and the associated callbacks in
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the list will be called. Both the correspondence of an event or an event sequence 

to a mode change and the association of a callback list with the mode change 

are specific to each agent class. Some agent classes maintain all the five callback 

lists as shown in Table 8.1 for each instance of tha t class. Some agent classes 

may not have any callback lists of this type at all. This is the case if there are 

no mode changes associated with agent instances of a particular class. As an 

example, the semantics of the Button agent are listed in Figure 8.5.

Table 8.1 Callback lists and agent mode changes

callback list

mode changes

from to

previewing normal previewing

previewing-done previewing normal

selecting previewing or normal selecting

select-quit selecting normal

select-done selecting previewing

The mapped/unm apped state changes of an agent instance can be 

connected to the semantics of other agent instances. For example, the selection 

of an item in a  Static Menu may cause a List to be mapped, and selection of 

another item at th a t time may unmap the List. This type of functionality can be 

accomplished by specifying the semantic connections between agent instances in 

the agent definitions of a  description file. No C language programming is 

needed to do this. See Section 8.6.6 for details of this type of semantics 

connection.
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BUTTON_UP_ENTER . change to previewing mode from normal mode. 
. call previewing callbacks if there are any

BUTTON_UP_EXIT . change to normal mode from previewing mode 
. call previewing-quit callbacks if there are any

BUTTON_DOWN_ENTER . change to selected mode from normal mode 
. call selecting callbacks if there are any

BUTTON-DOWN . change to selected mode from previewing mode 
. call selecting callbacks if there are any

BUTTON_DOWN_EXIT . change to normal mode from selecting mode 
. call selecting_quit callbacks if there are any

BUTTON-UP . change to previewing mode from selecting mode 
. if the selecting_done callback list is not empty, call 

selecting_done callbacks; if the selecting_done callback 
list is empty, put the button event information to the 
event register, then return GS-EXIT

BUTTON-CLICK . change to selecting mode from previewing mode 
. if the selecting_done callback list is not empty, call 

selecting_done callbacks; if the selecting_done callback 
list is empty, put the button event information to the 
event register, then return GS-EXIT 

. change to previewing mode from selecting mode

BUTTON_DOWN_STILL j BUTTON_DOWN_MOTION
. call selecting callbacks if there are any

Figure 8.5 Semantics of the Button  agent
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8.4.6 Description of Each Agent Class

This section gives a brief description of each of the agent classes developed 

in the present work. Details of these classes are given in (W hite et al, 1990).

8.4.6.1 Simple Agent Group

There are five agent classes in simple agent group. These classes are 

derived directly from the Basic abstract class.

A. Message Agent: A Message agent displays one or more lines of text strings in 

its window and can only be displayed in the normal mode. Message agent 

instances do not accept any events, and therefore, they do not respond to any 

type of user action.

( B. Button Agent: A Button agent displays a one line text string in its window.

It uses three different display modes to represent its states including the normal 

mode, the previewing mode, and the selected mode. A Button agent instance has 

five callback lists associated with its mode changes: the previewing,

previewing—quit, selecting, select-quit, and select-done lists.

C. Entry Agent. An Entry agent displays a one line text string in its window, 

and can only be displayed in the normal mode. The text string in an Entry 

agent instance can be edited by the user when the Entry agent instance is 

activated. An Entry agent instance maintains one callback list, the select-done 

list, and the list is associated with any change from an active to an inactive 

state.

D. Toggle Agent: A Toggle agent displays a one line text string in its window. 

A Toggle agent uses two different display modes to represent its states: the
#
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normal mode (unhighlighted) and the selected mode (highlighted). A Toggle 

agent instance maintains one callback list, the select-done list associated with its 

mode changes either from normal to selected or from selected to normal.

E. Application Window Agent'. The Application Window agent is a special agent 

class. No I/O  semantics or attributes are specified for an Application Window 

agent by GUIDES. These details depend specifically on the application, and the 

application is expected to handle them. The application draws whatever 

geometry etc. it wishes in the Application Window through calls to HOOPS. 

Callbacks associated with events in an Application Window can be registered to 

the segments in the Application Window through calls to the Callback Manager. 

Defining the Application Window as an agent class is for the sake of consistency 

of the GUIDES design and for convenience of the application.

8.4.6.2 Composite Agent Group

There are two agent classes in the composite agent group, the Form class 

and the Dialogue Window class. These two classes are derived from the 

Composite abstract class. There is another agent class, the Root class, which is 

derived from the Form  class. Any class which is derived from the Composite 

abstract class may have an optional label which is a Message agent. These 

classes are described below.

A. Form Agent: A Form  agent instance is simply a container that can hold one 

or more agent instances of any other type such that these instances can be 

manipulated together. A Form agent instance can be displayed only in one 

mode, the normal mode. There are no direct I/O  semantics for the Form agent 

class. Each child instance in a Form responds to the user’s actions individually 

according to the child’s own I/O  semantics.
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B. Dialogue Window Agent: A Dialogue Window agent instance can contain one 

or more agent instances of any agent class and can only be displayed in one 

mode, the normal mode. A Dialogue Window is used to accomplish a dialogue 

session between the user and the application. Therefore, the Dialogue Window is 

displayed on the screen only temporarily. The Dialogue Window is mapped to 

begin the dialogue session, and it is unmapped when the dialogue session 

terminates.

A Dialogue Window grabs events when it is mapped, tha t is, incoming 

events will be grabbed to the children of the Dialogue Window such tha t no 

event will be sent to anywhere outside the Dialogue Window. Thus, the user will 

be forced to finish the dialogue session before any other interaction can proceed. 

There are no direct I/O  semantics for the Dialogue Window class, and no 

callbacks can be registered with a Dialogue Window directly. Each child 

instance in a Dialogue Window responds to the user’s actions individually 

according to its own I/O  semantics.

C. Root Agent: The Root is a special class derived from the Form  agent class, 

and only one Root instance exists in any application. This instance is at the top 

of the composition hierarchy of the user-interface tools. All other agent 

instances in the user-interface are children and/or other descendents of the 

Root. The Root instance is automatically created and mapped by GUIDES at 

the initialization stage.

8.4.6.3 Restricted Composite Agent Group

There are seven agent classes in the restricted composite agent group. 

These classes are all derived from the Restricted Composite abstract class. 

These classes are described below.
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A. Labeled Entry. A Labeled Entry agent is simply an Entry agent which has a 

label. The I/O  semantics and the application interface functions are the same 

for both the Entry and Labeled Entry agent classes.

B. Notifier. A Notifier is essentially a menu of Toggle instances and is composed 

of one or more Toggle agent instances. Each Toggle has the same size and is 

called an item of the Notifier. These items may be packed in the Notifier 

window either horizontally, vertically, or in the form of a two-dimensional 

array. A Notifier instance does not have any direct I/O  semantics of its own. 

The appearance and I/O  semantics of its items are the same as those of the 

Toggle agent. The callback associated with an item is called when the item 

changes mode. A Notifier instance can be classified as either a single-selection or 

a multiple-selection notifier. In a single-selection Notifier, only one of the items 

may be selected/highlighted at one time. When one of the items is selected, the 

previously selected item becomes unselected. In a multiple-selection Notifier, 

any of the items can be in the selected mode at any one time.

C. Choice: A Choice agent instance is composed of one Button instance. The 

Button  of a Choice agent instance may be used to select two or more options, 

each of which is represented by a text string. The currently selected option is 

displayed in the Button  instance. A Choice instance does not have any direct 

I/O  semantics of its own. Its appearance and I/O  semantics are handled by the 

Button  instance. However, the Choice agent class specializes the behavior of the 

Button. First, the select-done callback of the Button  is made only after the 

cursor moves out of the Button  instance. Secondly, any selection of the Button  

only results in the next option of the Choice being displayed. Finally, only one 

callback can be registered with each option of the Choice, the select—done 

callback.

D. Static Menu: A Static Menu instance is composed of one or more Button
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agent instances. Each of these Buttons has the same size and is called an item of 

the Static Menu. These items may be packed in the Static Menu window either 

horizontally, vertically, or in the form of a two-dimensional array. A Static 

Menu instance does not have any direct I/O  semantics of its own. The 

appearance and I/O  semantics of its items are the same as the Button agent.

E. Popup Menu: A Popup Menu instance is composed of one or more Button 

agent instances. Each of the Buttons has the same size and is called an item of 

the Popup Menu. The items may be packed in the Popup Menu window either 

horizontally, vertically, or in the form of a two-dimensional array. The 

appearance and I/O  semantics of its items are the same as the Button agent. A 

Popup Menu agent instance is displayed on screen only temporarily. In general, 

a Popup Menu can be mapped by a certain event in an application window, by 

the selection of another agent instance, or by calling a GUIDES interface 

function.

When a Popup Menu is mapped, all the incoming events will be grabbed to 

the Popup Menu, and all of the Popup Menu's items will be displayed. If the 

mouse cursor is moved into an item with one of the mouse buttons down, the 

item entered will be highlighted in the selected mode and the selecting callback 

associated with this item, if there is one, will be called. If the mouse button is 

released or clicked while on an item, the select-done callback, if there is one, 

will be called, and the menu will be unmapped. If the mouse button is released 

or clicked while the mouse cursor is outside the menu area, the menu will be 

unmapped without the select-done callback being made.

F. List Column: A List Column instance can only be defined and used within a 

List agent and can not be used as an independent user-interface tool. A List 

Column is composed of a number of children agent instances referred to as 

elements. It maintains a group of data, each item of which is called an item of
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the List Column. One item is displayed in an element, and the number of items 

may not be the same as the number of elements. If the number of elements is 

greater than the number of items, the extra elements will be unmapped. If the 

number of items is greater than number of elements, only some of the items are 

displayed. The items in this case can be scrolled in the List Column.

Generally, elements of a column are packed vertically in the column, as 

suggested by the name. However, the elements in a column can also be packed 

in multiple columns, which may be convenient if only one group of data items is 

displayed in a List.

Items displayed in a column can be classified in five types: fixed, number, 

highlightable, selectable, and changeable types. Items displayed in the same 

column must be of the same type. In general, the content of the items can be 

any one of four data types: String, int, float, or a pair of floating point numbers. 

Different types of agents may be used to compose a List Column instance 

according to the type of its items.

A select-done callback may be registered with a List Column agent 

instance, and the callback is called whenever one of its element changes states.

G. List: A List agent instance is composed of one or more List Column agent 

instances and is used to display multiple groups of data on screen. Each group 

of data is displayed in a List Column instance. There is no limit on the number 

of data items in each group. However, the number of data items and the 

number of elements must be the same for each List Column. The number of 

data items in the columns of a  List can be dynamically specified by calling an 

interface function of the List agent.

The main distinctive features of the List agent are as follows:

c
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1. The number of items contained in the columns of a List instance may be 

modified at run time, and the contents of these items are specified at run 

time.

2. In general, only a certain number of items in each List Column are 

displayed on the screen a t one time. The items in each List Column can 

be scrolled such that the desired items will be visible in the display.

If the number of items contained in each column is larger than the 

specified number of elements th a t can be displayed on the screen, the List may 

use two Button agent instances for scrolling of the items displayed. One of the 

two Buttons is for scrolling the items one line at a time, and the other Button  for 

scrolling the items one page a t a time. A page is defined as the number of 

elements being displayed on the screen.

A List agent can be registered with a single select—done callback which will 

serve as the default callback for each of its columns. This default callback can 

be overwritten for an individual column by defining a specific select-done 

callback for the column.

8.5 Graphical Utilities

The graphical utilities of GUIDES are similar to agents in that they are 

general interaction techniques and can be utilized for any application. Typical 

graphical utilities are the Keypad, and the X-Y Plot Manager. However, there 

are some major differences between agents and graphical utilities:

1. Agents are more general, and can be used for any purpose, while graphical 

utilities are designed to accomplish pre-defined specific but application- 

independent tasks. For example, the X-Y Plot Manager is used to display 

x-y curves in an application window. It contains a number of its own 

non-graphical functions for processing the x-y curves.
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2. Agents can be composed to build complex interaction techniques, while 

graphical utilities are pre-defined and fixed, and cannot be further 

composed. For example, the Button agent can be used for any purpose. 

However, the X-Y Plot Manager can only be used to display x-y curves.

3. The layout within the window of a graphical utility is usually pre-defined 

and need not be specified by application programmers in their description 

files.

4. Agents never have access to the application database, and the only links 

between agent instances and application code are callbacks. Graphical 

utilities may need to access to the application database in order to provide 

fast feedback. For example, the X-Y Plot Manager needs access to the 

curve data in the application database.

The X-Y Plot Manager utility has been developed in this work. Other 

graphical utilities may be developed in the future work.

8.6 The Description Language

GUIDES provides a Description Language for applications to present the 

specification of their user interfaces. The files containing user-interface 

specifications written in the description language are called description files. 

The Parser of the description language parses the description files passed to 

GUIDES at run-time, and, by communication with GUIDES agents, builds the 

user-interface.

This section describes briefly the features of the description language and 

the use of the language in defining a user-interface. The syntax and features of 

the language are presented in Sections 8.6.1 to 8.6.8. A complete example of an 

application is given in Section 8.6.9 to illustrate these features. A more detailed 

explanation of the language can be found in the GUIDES Reference Manual
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(White et al., 1990), and the implementation of the description language parser 

is reported elsewhere (Zhang et al., 1990).

8.6.1 Lexical Conventions

There are seven token types defined in the GUIDES description language: 

comments, identifiers, keywords, constants, strings, operators, and separators.

1. Comments: A comment line is delimited either by a pair of characters 

"/*" and "*/" or by the double dash (—). Comments may not be nested 

and may not be continued for more than one line.

2. Identifiers: An identifier is a pre-defined resource name. These resource 

names always start with the characters "GsR" and denoted in general by 

the name GsRrtsource.

3. Keywords: There are 15 names reserved for use as keywords and may not 

be redefined in the specification of the user interface.

4. Constants: Constants may be of one of the following types: integer, 

floating point number, logical (true and false), a pair of floating point 

numbers, text string, and predefined constant. Any constant of these 

types listed in the following are denoted as either C O N STAN T  or its type 

name in all capital letters, e.g., INTEG ER  for an integer constant.

5. Strings: A string is a sequence of characters surrounded by double quotes. 

A string is denoted as STR IN G  in the description of the language. A 

string can also be used as a constant.

6. Operators: There is only one operator, the colon, in the language, 

which is used in resource assignment statements to separate the name and 

the value of a resource.
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7. Separators: Either the new-line character or the semi-colon character 

can be used to separate statements, and both are denoted as NL. The 

open brace ’{’ and the closed brace ’}’ are used to delimit a compound 

statement.

8.6.2 Statements and Compound Statements

Typically, most of the statements in a GUIDES description file are 

resource assignment statements and have the form

GsRresource : CO NSTANT

The appropriate data type of the C O N STAN T  depends on the type of the 

resource being defined by the statement. Several statements can be grouped 

together to form a compound statement. A compound statem ent is expressed as

{ statement-list }

where the statement-list represents one or more statements, and can be empty. 

A compound statem ent has no meaning by itself. It is always associated with 

other statements which require its use.

8.6.3 Defining an Agent Instance 

The statement

agent AG ENT—CLASS STRIN G  { statement-list }

defines an agent instance. AG E N T-C LASS  is a  pre-defined constant and is the 

class identifier of the agent instance to be defined. STR IN G  is the name of the 

agent instance. The statements which form the compound statem ent specify the 

details of the agent instance. An agent may be defined inside the compound
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statem ent of the definition of another agent. An agent so defined can only be 

referred to in the compound statement. This enables the local definition of 

agent instances and makes nested agent definitions possible.

Default resources for a certain agent class may be specified by the set 

default statem ent as below

set AG E N T-C LA SS defaults { statement-list }

where A G E N T-C LASS  is the identifier of the class to be set, and the compound 

statem ent contains the default resources to be used by instances of that class.

W ith the exception of the Root instance, an agent instance can only be 

defined once. The Root instance is created by GUIDES automatically at 

initialization time. Agent definition statements for the Root agent may be 

entered more than once for an application to instance its child agents and to set 

additional resources.

8.6.4 Defining a Composite Agent Instance

A unrestricted composite agent instance is composed by instancing agent 

instances (its child agents) which have already defined elsewhere. It instances a 

child agent by the following statem ent

instance AG EN T-C LASS STRING  PAIRD ATA PAIRD ATA

inside the compound statem ent of its definition. AG E N T-C LASS  and STRING  

are the class name and name of the child agent to be instanced. The location 

and size of the child agent within the window of the composite agent instance 

being defined are specified by the first and the second PAIRD ATA  respectively.

(
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8.6.5 Defining a Restricted Agent Instance

The child agents of a restricted composite agent instance are usually 

referred to as its item s. These child agents are specified in the compound 

statem ent in the definition of the restricted composite agent by the item  

statem ent as below

item STRIN G  { statement-list }

where STRIN G  is the name of the item, and compound statement may include 

any necessary statem ent to specify the item.

8.6.6 Connecting the Agent Semantics

The semantics of some agent classes can be connected such tha t the 

selection of an agent instance will cause another instance to be mapped. For 

example, a Dialogue Window can be specified to be mapped by the selection of a 

Button. The following mappedLby statem ent establishes such a connection

mapped-by A G E N T-C LASS STR IN G

or

mapped-by AG E N T -C LA SS STR IN G  STRING

The first case specifies the class identifier and the name of the agent instance by 

which the instance being defined will be mapped. The second case specifies the 

class identifier, the name of the agent instance, and name of the item by which 

the instance being defined will be mapped.

Similar connections may also be established by the unmapped—by 

statem ent such tha t the selection of an agent instance will cause another 

instance to be unmapped. The unmapped-by statem ent uses the keyword 

unmapped—by and has the same form as the mapped-by statement.
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8.6.7 Defining an Agent Style

The appearance of an agent instances is specified by the style used by the 

instance. GUIDES provides a default style for each agent class. An application 

may change the default style of an agent class. It can also define new styles 

based on existing styles. This is achieved by the style definition statement

define s tyle S T R I N G  { s ta temen t- l i s t  }

where S T R I N G  is the name of the style being defined. The compound 

statem ent specifies the details of the style.

8.6.8 Other Features

To increase the readability of a description file, aliases may be defined and 

used to replace identifiers, constants, or even other aliases.

To build a large scale user-interface, the number of agent instances used 

may be quite high and the specification may be long. The description language 

provides the file inclusion statem ent so tha t the specification can be separated 

into several files. These files can then be included in a "main" file which is 

passed to GUIDES.

Any file which specifies a portion of the complete user-interface of an 

application may be processed by GUIDES to create this portion of the interface 

during any stage after the initial startup of the application. Thus, it is possible 

to defer the creation of an off-screen portion of an interface until this portion 

needs to be displayed. This feature can be useful to improve the start-up 

performance of an application.

(
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8.6.9 A Complete Example

Figure 8.6 shows a modified version of the Goodbye world application 

implemented using the GUIDES. This application is discussed previously in 

Chapter 6 in regard to use of the X I1 Toolkit. Figures 8.7 and 8.8 list 

respectively the C code, "goodbye.c", and the description file, "goodbye.r", of 

this application. It should be noted th a t for this application, the description file 

can be created much smaller than the one shown in Fig. 8.8. Many statements 

are not necessary for this application and included in Fig. 8.8 to show features 

of the GUIDES description language.

Hello, world

Click this button

Goodbye, world

Click and die

«  (b)

Goodbye, world

Click and die

Please wait 10 seconds

(c)

Figure 8.6 A modified version of the Goodbye world application

In the description file, text preceded by double hyphens (—) is a comment. 

Two Form agent instances, "fl" and "f2", and a  Message agent instance, "wait", 

are defined and instanced by the Root agent instance. Each Form instance 

contains two children, one Message instance and one Button instance. In the 

Form "fl", the Message "m l" displays the text string "Hello, world", and the

: f  Button "bl" displays "Click this button". In the Form "f2", the Message "m2"
A
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#include "guides.h" 

int
quitcallback(client_data, event_info)
Gs-ClientData client-data;
Gs_EventInfor event_info;
{

GS_MapMe8sage("wait");
GS_UpdateDisplay(); 
sleep((int) client-data); 
return GS-EXIT;

}

int
main()
{

static Gs-CallbackRec sbCallbackTable[] =  {
{ "quit", quitcallback, (Gs-ClientData) 10 },

};
auto Gs_EventRec event;

GS_Initialiie();
GS_DefineCallbackTable(sbCallbackTable, 1);
GS_ParseDescriptionFile("goodbye.r");
GS_EventManager(&event);
exit(O);

Figure 8.7 The C code of the Goodbye world application
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define call GsRselect-doneCallback — define the name call as an alias
define style "user_defined_style" { -- define a style

GsRstyle : "2d_appearance" -  load a GUIDES supplied style 
GsRmode : normal -- change the normal mode
GsRbackgroundColor : "yellow" — set the background color of the normal mode

}
set form defaults { -- set the default attributes of form

GsRstyle : ”user_defined_style"
}
agent message "wait" { — define a message

GsRstring : "Please wait 10 seconds"
GsRmappedWithParent : false — not mapped with parent
GsRstringAlignment : left 
GsRstringSise : 0.80 
GsRstyle : ”user_defined_style”

}
agent root "root" { — the Root agent

GsRlocation : (-1.0, -1.0)
GsRsise : ( 2.0, 2.0)
agent form "fl" { -- the form on the first page

agent message "ml" { GsRstring : "Hello, world"
GsRstringAlignment: center } 

agent button "bl" { GsRstring : "Click this button" } 
instance message "ml" (-0.8, 0.1) (1.6, 0.7) 
instance button "bl" (-0.8, -0.8) (1.6, 0.7)
unmapped_by button "bl" — unmap when the button bl is selected
GsRstyle : "2dLappearance” — set the style to overrides the class default style

}
agent form ”f2" { — the form on the second page

agent message "m2" { GsRstring : "Goodbye, world"
GsRstringAlignment: center } 

agent button "b2" { GsRstring : "Click and die”
ca ll: "quit" }

instance message "m2" (-0.8, 0.1) (1.6, 0.7)
instance button "b2" (-0.8,-0.8) (1.6, 0.7)
GsRmappedWithParent : false
mapped-by form "fl" "bl" ~  map when the button bl in fl is selected

}
instance form "fl" (-0.8, -0.5) (1.6, 1.0) 
instance form "f2" (-0.8, -0.5) (1.6,1.0) 
instance message "wait" (-0.4, -0.9) (0.8, 0.1)

Figure 8.8 The description file of the Goodbye world application
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displays "Goodbye, world", and the Button "b2" displays "Click and die". The 

Message instance "wait" displays "Please wait 10 seconds".

When the program starts, only the Form  "fl" will be displayed on the 

screen as shown in Fig. 8.6(a) because the Form  "f2" and the Message "wait" are 

defined as not being mapped with their parent, the Root. The Form "fl" is also 

defined as unmapped by the Button "bl", and "f2" is defined as mapped by the 

Button "bl" in "fl". Thus, when "bl" is selected by clicking a mouse button 

while the mouse cursor is in the window of "bl", the Form "fl" as well as its 

children will disappear, and the Form "f2" and its children will be displayed. 

This is shown in Fig 8.6(b). A callback with the name "quit" is registered to the 

Button "b2". This callback is called by GUIDES when the "b2" is selected.

The callback function, quitcallback, associated with the callback name 

"quit" is listed in Figure 8.7. When this function is called, it first calls a 

GUIDES interface function GS-MapMessage to map the Message instance "wait" 

with the name of the Message instance as a parameter. It then calls 

GS-UpdateDisplay to update the screen or else the screen will not be updated 

until the next event is processed. The resulting display on the screen is shown in 

Figure 8.6(c). The callback function also calls a system function sleep to pause 

the process for a few seconds specified by the client-data, and then returns 

GS-EXIT. Therefore, once this callback function is called, the interaction 

control, which was passed to GUIDES from the application by calling the 

interface function GS—EventManager, will be returned to the application.

Also shown in Figure 8.7 is the main function of the application. In the 

main function, the callback function quitcallback is associated in the array of 

sbCallbackTable with a callback name "quit" and the client-data, an integer 10 

which is the number of seconds the application should pause when the button 

"b2" is selected. In the main function, the application first calls GS-Initialize to 

initialize GUIDES. It then calls GS-DefineCallbackTable to register callbacks to
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GUIDES and GS-ParseDescriptionFile to tell GUIDES to parse the description 

file "goodbye.r". Finally, the application passes the interaction control to 

GUIDES by calling the function GS-EventManager. The execution of the 

application pauses for 10 seconds and then terminates when a mouse button is 

clicked while the mouse cursor is in the Button "b2". This causes GUIDES to 

return control to the application since the callback function quitcallback returns 

G S-E X IT  to GUIDES.

It should be noted th a t the Message "wait" could be specified as mappedL.bg 

the Button  "b2" in the Form "f2". The reason for not doing so is to show more 

features of the GUIDES. The "goodbye.r" file also shows other features of 

GUIDES description language. A name "call" is defined as an alias of the 

resource name GsRselect-doneCallback and is used in specifying the select-done 

callback of the Button "b2". A style named "user_defined_style" is defined by a 

style definition statement. This style is the same as a GUIDES provided style 

"2d_appearance" except the background color of the normal mode is changed to 

"yellow". This style is specified as the class default style of the Form agent class 

in a set class default statement. It is used by the Form "f2" because this style is 

the class default for Form agent, and by the Message "wait" because this style is 

specified explicitly by a resource assignment statement, 

GsRstyle:" user-defined—style", in the definition of the Message "wait". This style 

is not used by the Form "fl" because a resource assignment statement, 

GsRstyle:" 2d—appearance", in the definition of "f2" overrides the class default.

The benefit of using GUIDES is obvious from this example. We are able 

to  implement the user-application interaction entirely in the GUIDES 

description language. The static layout and appearance of the interface is 

independent of the C code of the application. Moreover, the run-time semantics 

associated with mapping and unmapping of GUIDES agents are also 

independent of the C code. Thus, GUIDES makes it possible to develop and test 

the user-interface independently from the application-specific components.
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Often, the user-interface can be developed and tested before the application- 

specific code is written.

8.7 GUIDES versus Motif

The OSF/Motif system is described in Chapter 6. It is interesting to 

compare the use of Motif User Interface Language in defining application user 

interfaces with the use of the GUIDES description language. Both systems are 

similar conceptually in tha t they are all developed from the motivation to 

separate the definition of the user interface from the specific functionalities of 

the application. In some aspects, Motif provides more functionality than 

GUIDES for building application’s user-interfaces.

The similarities and differences between GUIDES and Motif are listed 

below.

1. Both systems use a description (or specification) language to describe the 

interface of an application separately from the application’s C code and to 

create the interface at run time.

2. Motif provides more interface tools for applications than GUIDES. 

However, GUIDES provides a  reasonably complete set of tools for 

application software development. New interface tools (i.e., new widget 

classes) may be defined in Motif UIL, while this can not be done in 

GUIDES description language.

3. Motif provides a compiler to compile the user interface specification, and 

the compiled form of the specification is loaded at run time. This leads to 

a higher run-time performance in the creation of the interface. GUIDES 

does not have a compiler for its description language.
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4. Both GUIDES and Motif allows applications to defer the creation of 

certain interaction tools that are initially off-screen until these tools need 

to be displayed. This helps to improve the start-up performance.

5. GUIDES works with a modern three-dimensional graphics package

HOOPS seamlessly. It is not known whether there is a corresponding

three-dimensional graphics package that works seamlessly with Motif.

6. Both GUIDES and Motif use the callback mechanism for communication 

between the user-interface and application specific components. However, 

in Motif the binding of a callback function with the client-data is done in 

the specification language, whereas in GUIDES it is done in the 

application’s C code. Motif’s approach is flexible in that the client-data 

may be specified independently of the C code. However, this flexibility 

complicates the usage of the language. GUIDES’s approach is less-flexible 

but is still reasonable because the client-data is usually data defined in the

application’s C code and should be naturally bound with the callback

functions in the C code. Also, the GUIDES approach simplifies the 

reference to callbacks in the description language.

7. The Motif UIL can be used to specify only the static appearance of the

user-interface. The GUIDES description language can be used to specify

not only the static appearance, but also the dynamic behavior of the 

interface, i.e., the mapping and unmapping of interaction tools. This is 

convenient for the design of user-interfaces composed of several different 

screen setups.

8. The Motif UIL provides instructions for string concatenation, for defining 

literal values used in a specification and fetched by the application C code, 

for defining identifiers defined in application C code and used in the 

specification. These features are not supported in GUIDES description 

language. However, they may be easily added to the language.
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CHAPTER 9 THE SESDE OBJECT LIBRARY

This chapter gives a brief summary of state-of-the-art approaches in 

engineering software development and introduces the SESDE object library. 

Section 9.1 reviews several recent literatures and discusses some issues in object- 

oriented engineering software development. Section 9.2 introduces the SESDE 

object library. This library currently includes a set of object classes for 

engineering computing in general. The design and implementation of selected 

classes of the library are discussed in Chapters 10, 11, and 12. A complete 

documentation of the library may be found in (Zhang et al., 1990b).

9.1 Object-Oriented Engineering Software Development

9.1.1 Literature Review

The term  engineering software can refer to software for different activities 

including engineering analysis, design, research and education. Engineering 

software is typically associated with a certain engineering domain and 

implements some physical principles and related mathematical formulations and 

algorithms in th a t specific engineering domain. Therefore, expertise in a  specific 

engineering domain is necessary to the development of quality engineering 

software. This is especially true for research software developed for testing new 

models or new methods. Thus, engineers or engineering professionals must play 

the critical role in the development of engineering software rather than 

computer science professionals. This is the major distinction between 

engineering software and software such as operating systems. This is also a 

reason why the adoption of new software engineering techniques is occurring at
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a slower pace in engineering software development.

Recently, object-oriented programming has attracted considerable 

attention in engineering software development (Miller, 1988; Baugh et al, 1989; 

Fenves, 1990). Problems with the older software development approach in 

procedural languages such as low levels of abstraction, over-complicated and 

expensive in development and maintenance have been recognized. Attempts 

have been made to apply object-oriented programming in engineering software 

development.

Miller (1988) developed an object-oriented structural analysis program for 

linearly connected finite element systems (i.e., systems in which no one node 

connects to more than two elements). The program was implemented in 

Flavors, an object-oriented extension of the LISP language. Miller also discussed 

an object-oriented modeling for general structural systems.

Baugh and Rehak (1989) have provided an excellent description of object- 

oriented design of finite element programs for structural analysis. Their paper 

focused on abstracted data representations of entities in a finite element system. 

A prototype finite element system is reported as being developed in their work 

to demonstrate this new approach. However, no details are given regarding the 

design and implementation techniques, the efficiency of their implementation, 

and the implementation language.

Fenves (1990) discussed the advantages of object-oriented programming 

for developing engineering software. In his paper, the advantages are illustrated 

by the development of an abstraction of mathematical graphs used for ordering 

nodes and elements in a finite element mesh. The Smalltalk language is used in 

the development. Even though reusability is recognized as an important feature 

of object-oriented programming in this paper, the illustration example presented 

seems to be a one-of-a-kind design.
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A programming environment for structural engineering computations was 

recently reported by Landers (1990). This environment consists of four major 

components:

1. A command interpreter which defines a language for developing 

applications in the environment. The syntax of the language is a mixture 

of both C and FORTRAN languages. The interpreter translates programs 

written in the language into instructions executable by a virtual machine.

2. A virtual machine which is equivalent to a complete computer system 

implemented entirely in software. This virtual machine is the core of the 

environment.

3. A set of structural analysis subroutine libraries which are callable from 

applications written in the language of the system.

4. A set of application libraries which consist of a collection of utilities th a t 

are used to connect applications developed in the system with existing 

finite element programs and computer graphics systems.

Landers claims th a t this system offers many advantages over the current 

state of technology in the area of program development for structural analysis

and is highly flexible and portable. However, the following weaknesses of this 

system are apparent from Landers’s report.

1. The language is not well designed from the point-of-view of software

engineering. Global data areas or variables are defined by the 

environment and shared by modules or subroutines provided by the 

environment and used to compose an application. Thus, to program in 

this environment, a  programmer has to learn not only the syntax of the 

language, but also the global variables and assumptions made on these 

variables to compose the modules into an application.
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An application developed in the environment is portable only in the sense 

that the environment is ported together with the application.

The structural libraries of the environment are subroutine libraries, and 

subject to the criticisms discussed previously in Chapter 3. The modules 

contained in these libraries are reusable only in the sense of "use-as-is".

The language provided by the environment is an interpretive language, 

and thus it is likely to have low run time efficiency.

As discussed in previous chapters, object-oriented programming with 

object-oriented languages provides the most promising approach a t the present 

time for developing quality engineering software in an efficient manner. There 

are two important issues which need to be emphasized regarding this approach: 

reusability and efficiency. These are discussed in the following two sub-sections.

I
9.1.2 Reusability

As discussed in Chapters 3 and 4, reusability is the most im portant benefit 

of adopting object-oriented programming. As a result of reusability, the efforts 

spent on engineering software development can be accumulated, rather than 

wasted, through the use of reusable software components. A substantial amount 

of engineering software can be developed by composing existing components 

with new components developed for the software. These new components will 

be added to the collection of reusable components for future reuse. Thus, the 

development of high-quality engineering software will be made easier. To 

facilitate large-scale resue, a large collection of object classes is necessary. The 

class libraries for a specific engineering domain in the future may contain several 

hundreds even thousands classes for reuse. Efforts must be made toward the 

development of such libraries.

1
3.

4.



www.manaraa.com

188

However, object-oriented programming methodologies and object-oriented 

languages only make the creation of reusable components feasible and much 

easier compared with the older methodologies and procedural languages. They 

do not make reuse happen. Designing a software in terms of objects and 

implementing the software in an object-oriented language do not imply that the 

components of the software can easily be reused, and one-of-a-kind applications 

may still be easier to develop. W ith object-oriented technologies, the creation of 

reusable components is still a challenging task. It requires a great deal of 

knowledge of the application domain and of object-oriented programming 

techniques, and well thought out design and implementation decisions.

One way to create reusable components or object classes for a specific 

domain is to perform a domain analysis and to actively search, classify and 

create object classes often used by applications in the domain. These classes 

usually form the foundation for reuse in the domain and for further 

development of other object classes.

Another way is to create reusable components in the development of a 

specific software. Inevitably, new classes are found necessary for the specific 

software and not available in class libraries. These new classes should not be 

designed and implemented only for the particular software, rather, they should 

be designed and implemented as general purpose reusable components.

9.1.3 Efficiency

Due to the rapid increase of computer processing speed, the efficiency of a 

certain language for numerical computations becomes less important now than 

ever before. However, numerical efficiency is still a primary concern for 

computationally-intensive applications such as finite element analysis programs.

f
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Object-oriented programming performed in an object-oriented language 

adds overhead at run-time compared to traditional procedural programming. 

This overhead varies among different object-oriented languages. Considering the 

advantages in program design, development, maintenance, and evolution, lower 

efficiency of object-oriented languages may be compromised for many 

engineering software systems. However, for computationally-intensive 

applications, object-oriented languages with higher efficiency such as C ++  (of 

which efficiency is a primary goal) should be used. Languages such as Smalltalk, 

which is claimed to be much purer than C + +  in the sense of "object- 

orientedness", may be used to produce prototypes of computational-intensive 

systems but not for the systems for practical use because of their low run time 

performance.

9.2 Object Classes in the SESDE Library

A set of object classes for engineering computing in general is developed in 

the present work. These classes are written in the C + +  language and stored as 

reusable components in the SESDE Object Library. These classes represent and 

implement basic entities and utilities commonly used in engineering computing. 

These classes can be subdivided into three groups: object classes for general data 

structures and general utilities, object classes for full matrices, and object classes 

for sparse matrices. Table 9.1 shows a complete listing of these classes.

The goals of this development are as follows:

1. To investigate and demonstrate object-oriented approaches for engineering 

software development;

2. To provide models for the development of other reusable components for 

engineering computing;
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Table 9.1 Object classes developed in the present work

class name description

S tr ing for text strings.

E rrorH and ler error handling utility.

C LArgum ent command-line argument processing utility.

V ector parameterized vector class.

E x tA rra y parameterized array class for collections of objects.

Bag parameterized array class for collections of objects.

M a trix for general full matrices.

L U M atrix for decomposed matrices.

D M atrix for diagonal matrices.

S M a trix for symmetric matrices.

L T M a tr ix for lower-triangle matrices.

U T M atrix for upper-triangle matrices.

Sparse abstract class for node-based sparse matrix classes.

S V ee to r vector class to be used with the Sparse class.

A e tiveC o lu m n node-based sparse class implementing the Skyline scheme.

S  G raph node-based sparse class implementing a graph-based scheme.

SparseM atrix abstract class for unknown-based sparse matrix classes.

Skyline i unknown-based sparse class implementing the Skyline scheme.

4
'•Ti
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3. To provide basic reusable components for engineering software 

development.

Some of these classes are mainly for numerical computing such as the full 

and sparse matrix classes. The basic type of floating-point numbers for these 

classes is defined as Real which can be either float or double. The selection of 

the basic type can be made a t compilation time.
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CHAPTER 10 BASIC DATA STRUCTURES AND UTILITIES

This chapter describes selected object classes for basic data structures and 

for general utilities developed in the present work. Section 10.1 presents the 

ErrorHandler class for exception handling. Two parameterized extensible array 

classes are presented in Section 10.2. Finally, Section 10.3 describes a 

parameterized vector class. In each section, the reason for the development is 

discussed first, the description of the design and use of the class(es) then follows. 

A complete documentation of these classes may be found in (Zhang et al., 

1990b).

10.1 An Exception Handling Class

When object libraries are used extensively, the mechanisms for error or 

exception handling become important. In an application program, exception 

handling is relatively easy because application programmers can decide what the 

software should do. When a certain exception occurs, programmers can decide 

whether to resume the execution a t the point where the exception has occurred, 

to resume the execution a t a  point other than the exception point, or simply to 

abort the execution.

However, in the design of a library, final decisions on the handling of 

exceptions should not be made by library developers. Take the matrix 

calculator (which will be discussed in the next chapter) as an example. If a 

matrix element selection function is called with bad indices, an error message 

should be reported and the program should then process the next command.
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However, for other applications, the execution may have to be aborted for the 

same error in order to let programmers determine the reason for the exception 

through the examination of the core file with the help of debugger tools.

An object class ErrorHandler is developed and used by many of the object 

classes developed in the present work to handle exceptions in a flexible way. 

This class is designed to create objects used by other classes as member objects. 

The declaration of the ErrorHandler class is listed in Figure 10.1. As an 

example, the use of the class with the Matrix class described in the next chapter 

is shown in Figure 10.2.

The exceptions tha t may be detected by a class are identified by exception 

identifiers. In the Matrix class example shown in Figure 10.2, mtr-index, 

m trsize , .... are exception identifiers. Exceptions are further classified as either 

error-exceptions or warning-exceptions. Whether a specific exception should be 

defined as an error or a warning is up to the class developer. Usually, a serious 

exception is considered as an error, and a less serious one, which the class 

developer may know how to handle, and in which the execution may be resumed 

is considered as a warning. This classification is to provide the clients with two 

different levels for exception handling. However, the ErrorHandler treats the 

two types of exceptions in a  very similar way.

10.1.1 Handling Error Exceptions

Once an exception occurs, the function ErrorHandler:.-error is called 

through an ErrorHandler object (Matrixr.eh in Fig. 10.2). Here, the notation 

Matrix::eh and ErrorHandlerr.error is interpreted as class-name::name and 

indicates tha t name is the name of a member of the class class-name. The 

function error accepts a variable number of parameters, with the first parameter 

being an exception identifier, the second being a format string tha t specifies how 

to print the rest of the arguments with the message header of the class.
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typedef int (*Ehf)(int);
const int ignore =  0, throw =  1;

class ErrorHandler { 
int error-signal;
int warning-signal;
char* message_header;
Ehf error_handler;
Ehf warning-handier; 

public:
ErrorHandler(char* mh, int es =  SIGABRT, int ws =  SIGUSRl)
{ / /  SIGABRT and SIGUSRl are constants defined in standard header signal.h 

error-signal =  es; 
warning-signal =  ws; 
message-header =  mh;
error-handier =  warning-handier =  (Ehf) 0;

}
void set_error_signal(int es) { error-signal — es; ) 
void set_warning_signal(int ws) { warning-signal =  ws; } 
void set_error_handler(Ehf f) { error_handler =  f; } 
void set_warning_handler(Ehf f) { warning-handier =  f; } 
void error(int ...); 
void warning(int ...);

};

Figure 10.1 The declaration of the ErrorHandler class
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A n e x c e rp t fro m  th e  M a tr ix  class d e c la ra tio n

#include "errorCC.h"

matrixerrors { mtr_index, mtr_size, m tr-dim , .... };enum

class Matrix { 
private:

static ErrorHandler eh; 
public:

void set_error_signal(int i) { eh.set_error_signal(i); } 
void set_warning_signal(int i) { eh.set-warning-signal(i); } 
void set_error_handler(Ehf f) { eh.set_error_handler(f); } 
void set_warning_handler(Ehf f) { eh.set_warning_handler(f); }

};

A n  e x c e rp t fro m  th e  M a tr ix  c lass im p le m e n ta tio n

ErrorHandler Matrix::eh("Matrix Error:");
Real& Matrix::operator()(int i, int j)
{

if (i <  0 11 i > =  row 11 j <  0 11 j > =  col)

eh.error(mtr_index, "Matrix index {%&, %d) out of range", i, j); 
return a[i][j];

Figure 10.2 Use of the ErrorHandler in the Matrix class
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A client of a class containing an ErrorHandler member object for exception 

handling may specify an error-handier for the class. An error-handier is of type 

Ehf or a function which accepts an int argument and returns an int. In the 

Matrix class example above, the function Matrix: :set-error-handler is for this 

purpose, which in turn calls eh.set— error—handler to specify the error-handier for 

the eh member object. An error-handier accepts an exception identifier as its 

argument. It returns ignore, a const int defined in errorCC.h, if the exception is 

handled successfully and the execution can be resumed a t the point where the 

exception has occurred. Otherwise, it returns throw, a const int defined in 

errorCC.h.

In the function error, after the message is printed, the error-handier will be 

called if there is one. If no error-handier is specified or the error-handier returns 

throw, a signal is sent to the operating system. The signal sent by the function 

error is by default SIGABRT, a signal constant defined in the C standard 

header file <signal.h>. This signal may be caught by the client using the signal 

facilities provided in the C language. If no signal is caught by an application, 

sending the signal SIGABRT to the operating system will abort the process and 

generate a core file. The clients of ErrorHandler may reset the error-signal to be 

sent. In the Matrix class example, the function Matrix::set-crrorsignal is for 

this purpose. This function in turn  calls eh.set-errorsignal to reset the error 

signal of eh.

10.1.2 Handling Warning Bxceptions

The handling process for an exception classified as warning is quite similar 

to tha t for the error exception described above. There are only two differences: 

(1) a signal is sent to the operating system only when a warning-handier is 

specified and the warning-handier returns throw, (2) the signal sent by the 

function warning is by default SIGUSRl th a t will stop the process w ithout
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generating a core file. The warning-handier and warning signal of an 

ErrorHandler object may also be reset by calling functions of the ErrorHandler 

class.

10.2 Parameterized Array Classes

A parameterized class or parameterized type usually implements a generic 

data structure which may be bound with any particular data type to generate a 

specific class for the particular data type. For example, integer arrays can 

belong to a particular class of arrays which store collections of integers, and 

String arrays (String is a class for text strings) can belong to another particular 

class of arrays which store collections of String objects. Even though the type of 

entries in the two array classes are not the same, the two classes share many 

common operations such as array element selection since both classes are for 

arrays. Thus, a parameterized array class may be defined to represent generic 

arrays and to generate specific array classes for particular element types.

The array is a common data structure built into probably almost every 

general-purpose programming language. An array of a particular data type 

holds a  collection of variables (or objects) of tha t type. These objects, or 

elements of the array, are stored in memory contiguously such tha t they can be 

accessed by indices. The weaknesses of the built-in array data structure are 

that: (1) usually no dynamic index checking supported by the language; (2) the 

size of an array is fixed once the array is allocated statically.

In many cases of engineering software development, it is not possible to 

estimate of the maximum required size of an array a t the time tha t the array is 

created. In these cases, another data structure, the linked list, is often used to 

store collections of objects, the number of which may grow. However, this 

approach leads to other problems in that: (1) the direct access of elements by 

indices is expensive to use; (2) the code using linked lists has higher complexity
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than and is not as expressive as that using arrays; and (3) the linked list 

structure is .better used for ordered collections of objects, while in many cases, 

collections of objects may not necessarily be ordered.

The parameterized array classes developed in the present work provide the 

following features which avoid the weakness usually associated with the built-in 

array data structure:

1. Safe and flexible element selection: index of element in element selection 

operations may be checked.

2. Adjustable array size: the size of arrays may be adjusted either implicitly 

by element selection or element addition operations, or explicitly by the 

size reset operation.

3. Cursor: a cursor is defined for an array that may be used to locate a 

specific element in the array and to construct loops over elements in the 

array.

4. Built-in iterators: loops over elements in an array in certain orders may be 

performed easily by using these iterators.

Because of the lack of support for parameterized classes in the current 

version of C + +  (version 2.0), a parametrized class is declared and implemented 

by using the macros of the C preprocessor. Two parameterized array classes, 

ExtArray(T) and Bag(T) are developed, where T  stands for a particular data 

type or object class from which a specific array class is defined. For example, a 

String array class is denoted as ExtArray(String) which is expanded by the C 

preprocessor to StringExtArray as the name of the class. The class Bag(T) is 

derived from the ExtArray(T) class. These two classes are described in the 

following sub-sections.

f
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10.2.1 The E x tA r r a y ( T )  Class

Figure 10.3 shows a simplified version of the ExtArray(T) class declaration. 

As mentioned previously, the current version of C ++  does not support 

parameterized classes, and the C preprocessor has to be used in the declaration 

and implementation. However, to avoid unnecessary complexity of the 

description, the declaration of the parameterized ExtArray(T) class is shown in 

the figure as an ordinary class. This also applies to the descriptions of other 

parameterized classes in this chapter.

10.2.1.1 Class Definition

An object of a specific ExtArray(T) class holds the following properties as 

shown in Fig. 10.3

1. A pointer, a, to type T  which points to the array elements in memory;

2. The size of the array, sz, and the size increment, dsz, for expanding the 

size of the array;

3. The actual number of elements in the array, ec, which may or may not be 

the same as the size of the array. It is also the maximum index has been 

used for the array;

4. A cursor, es, which is the index of the current element.

5. A static member, eh, which is an object of the ErrorHandler class and 

shared by all objects of the specific ExtArray(T) class for exception 

handling.

Memory for elements of an initial array size is allocated and pointed to by 

a when an ExtArray(T) object is created. An object may be either created 

statically or by using the C + +  operator new. When expanding the array size of
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A n e x c e rp t fro m  th e  E x tA rra y (T )  class d e c la ra tio n

class ExtArray(T) { 
protected:

T* a;
int sz, dsz; 
int ec, cs;
static ErrorHandler eh; 

public:
Ext Array (T)(int s, int ds =  0);
“ExtArray(T)();
T elem(int i);
T& operator()(int i);
T& operator [] (int i); 
void set_siie(int); 
void set_cursor(int cursor =  0); 
virtual int add(T& e); 
virtual int current(T& e); 
virtual int next(T& e); 
virtual int previous(T& e); 
virtual int loop(T& e); 
virtual int backloop(T& e);

};

Figure 10.3 A simplified version of the ExtArray(T) class declaration
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the object, a new block of memory is allocated and the contents of the existing 

elements are copied to this new block of memory. The old memory block is 

released, and a is made to point to this new memory block. Thus, the array size 

of an ExtArray(T) object is expanded.

The ExtArray(T) class implements methods for array information 

retrieval, element selection, array size adjustm ent, iteration, direct array object 

assignment, and exception handling. Prototypes of some of these methods are 

shown in Fig. 10.3.

A specific Ext Array class for a particular element data type may be 

declared and implemented by using two macros respectively after the inclusion 

of the header file extarrayCC.h. Figure 10.4 shows the declaration and 

implementation of the StringExtArray class.

{ #include "strmgCC.h”
#include "extarrayCC.h"

ExtArrayCla88Declaration(String)
ExtArrayClassImplementation(Strmg)

Figure 10.4 Declaration and implementation of the StringExtArray class

10.2.1.2 Element Selection and Array Size Adjustment

Elements in an array may be accessed by an index starting from 0. An 

element in an array may be selected or accessed by using one of the following 

three member or operator functions: elem(int), operator [)(int), and

operatorQ(int). These functions all accept the index of an element as an 

argument.
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The member function elem provides a "read-only" efficient element access, 

and no element index checking is performed. The operator]) provides both read 

and write access to an array element, and provides index checking such tha t the 

index must be in the range between 0 and ec. The operatorf] also provides read 

and write access to an array element. Moreover, if the index passed to it is 

greater than the current number of elements, the current number of elements is 

reset to the index plus 1. If the index is greater than the current size of the 

array, the array will be expanded to a size larger than the index. However, if 

the size of an array is expanded to a size larger than a certain multiple of the 

current size, a warning message is issued to avoid expanding an array accidently.

In addition to the operatorf] discussed above, there are two other member 

functions used to adjust the size of an array: add(T&) and set-size(int). The 

function add accepts an argument of type T  and assigns it to the location ec, the 

current number of elements, and increases ec by 1. The array will be extended 

using the array size increment if ec equals sz, the size of the array. The function 

8etsize(in t)  accepts an argument which is the new size of the array, and reset 

the array to the new size explicitly. Elements currently stored in the array will 

remain if the new size is larger than the current size sz, or else only the first new 

sz elements remain.

10.2.1.3 Cursor and Iterations

The cursor cs for an array object may be used to locate a specific element 

in the array and to construct loops over elements in the array. Methods are 

provided to set the current element to which the cursor refers to, and to move 

the cursor forward or backward. Loops over elements of the array forward or 

backward may be constructed using these methods. Two functions, loop(T&) 

and backloop(T&) are also provided as built-in iterators for performing loops. 

Iterators provide mechanisms to perform loops without forcing the clients of the
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object class to depend on the implementation details of the class. Figure 10.5 

shows several different ways to construct loops over array elements. The 

StringExtArray class is used for the illustration.

10.2.2 The Bag(T) Class

The parameterized array class Bag(T) is derived from the ExtArray(T) 

class which is defined as a public base of the Bag(T) class. Thus, any operation 

performed on an ExtArray(T) object may be used for a Bag(T) object. A 

simplified version of the Bag(T) class is shown in Figure 10.6.

10.2.2.1 Class Definition

The major difference distinguishing the Bag(T) class from its base class 

ExtArray(T) is the notation of null elements. An element of a Bag(T) object 

may be null, while an element of an ExtArray(T) object may not be 

distinguished from being null or not.

The Ext Array class is more general and it does not place any requirement 

on a data type T  from which a specific ExtArray(T) class may be defined. 

Ideally, an ExtArray(T) class may be generated from any data type T. The 

value of an element in an ExtArray(T) can be changed, but the element can not 

be deleted. Thus, an ExtArray(T) class should be used for the cases where an 

element deletion operation is not required. When such an operation is required, 

the Bag class should be used.

The Bag class requires a data  type T  support the notation of null object in 

order to define a specific Bag(T) class. Basic built-in data types such as int and 

float do not have the notation of null object and therefore can not be used to 

define a specific Bag class. Because an element of a Bag(T) class may be
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StringExtArray a(n);
String t; 
int i;

/ /  some operations on a

F o rw a rd  loop u sin g  th e  m e th o d  n e x t

a.set-cursor(i); / /  forward loops may start from the i’th element
a.current(t); / /  get the current element
do {

/ /  the loop body, performing operations on t 
} while (a.next(t));

B a c k w a rd  loop u s in g  th e  m e th o d  p re v io u s

a.set-cursor(i); / /  backward loops may start from the i’th element
a.current(t); / /  get the current element
do {

/ /  the loop body, performing operations on t 
} while (a.previous(t));

Forward loop using the Iterator loop

a.set-cursor(i); / /  forward loops may start from the i’th elementB 
while (a.loop(t)) {

/ /  the loop body, performing operations on t
}

Backward loop ualng the iterator backloop

a.*et_cursor_to_end(); / /  backward loops may start from the last element 
while (a.backloop(t)) {

/ /  the loop body, performing operations on t
}

Figure 10.5 Constructing loops over array elements
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A n e x c e rp t fro m  th e  B ag(T ) c lass d e c la ra tio n

class Bag(T) : public ExtArray(T) { 
public:

Bag(T)(int s, int ds =  0) : (s, ds) { }; / /  inherits its base and does nothing
int add(T& e);
int remove(T& e);
int loop(T& e);
int backloop(T& e);
int lookup(T& e);
int purge(T& e);
int shrink();

Figure 10.6 A simplified version of the Bag(T) class declaration

checked for whether it is null or not, an element in the object may be deleted, 

erased, and compared against null.

A specific Bag class for a particular element data type may be declared 

and implemented by using four macros respectively after the inclusion of the 

header file bagCC.h. Figure 10.7 shows the declaration and implementation of 

the StringBag class.

#include "stringCC.h"
#include "bagCC.h"

ExtArrayClassDeclaration(String)
BagClaasDeclaration(String)
ExtArrayClanlmplementation(String)
BagClassIinplementation(String)

Figure 10.7 Declaration and implementation of the StringBag class
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10.2.2.2 Additional Operations Defined in the B a g ( T )  Class

The Bag(T) class provides additional operations for array objects as shown 

in Figure 10.6. Using these methods, an element of a Bag(T) object may be 

removed from the array, null elem ents in the array of a Bag(T) object may be 

purged such that non-null elements will be stored continuously in the front 

portion of the array, and the size o f the array m ay be shrunk such that only  

non-null elem ents will be stored in the array.

The member function add(T&) of the ExtArray(T) class is redefined in the 

Bag(T) class. If there is a null elem ent in the first ec positions, this function will 

put the object of type T  at that position, or else it calls ExtArray(T)::add(T&) 

to add the object to the Bag(T) object. The built-in iterators loop(T&) and 

backloop(T&) are also redefined such that only non-null elem ents will be passed 

back.

10.2.2.3 The Baglterator(T) class

An iterator class Baglterator(T) is defined for use with the Bag(T) class. 

The Bag(T) class has its own iterators, loop and backloop which use the internal 

cursor of an Bag(T) object to construct loops over array elements. Because 

these built-in iterators rely on a  single internal cursor, they can not be used to 

construct nested loops over the elements of a Bag(T) object. This is the reason 

for the development of the Baglterator(T) class. The iterator class makes it 

possible to construct deeply nested loops over elements of a Bag(T) without 

knowing the internal storage structure of a Bag(T) object. Figure 10.8 shows a 

simplified version of the Baglterator(T) class declaration, and Figure 10.9 shows 

example uses of Baglterator objects.

Three iterators, next, loopl, and loopS are defined as iterators of a 

StringBag object, and three different loops are shown in Fig. 10.9.
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A n e x c e rp t from  th e  B a g lte ra to r (T )  c lass d e c la ra tio n

class Bag(T) { 
private:

Bag(T)* bag; 
int cs, It; 

public:
BagIterator(T)(Bag(T)& b); 
void resetiint init =  0); 
void resetlint init, int last); 
int cursorQ; 
int operator()(T& e);

};

Figure 10.8 A  simplified version of the Baglterator(T) class declaration

10.3 A  Parameterized Vector Class

A parameterized vector class, Vector(T), is developed to represent the 

vector quantities often used in scientific and engineering computation. A specific 

vector class with a particular type of vector elements can be declared and 

implemented using this parameterized class. Several commonly used vector 

operations are supported, and a set of operators is overloaded for easy and 

expressive coding. Also, the index of an element in vector element selection 

operation may be checked to make vector operations safe. Figure 10.10 shows a 

simplified version of the Vector(T) class declaration. A specific vector class with 

a particular type of T  can be declared and implemented using the parameterized 

class in the same way as defining a specific array class using ExtArray(T).

To avoid copying every element of a vector when passing or returning a 

Vector(T) variable to or from a function and when assigning a Vector(T) 

variable to another, a separate data structure, vector—rep(T), is defined as shown 

in Fig. 10.10. This structure holds the elements and number of elements of a 

Vector(T) object. A Vector(T) object actually holds one pointer to an instance 

of such a structure. An instance of such a structure may be referred to by one
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2 0 8

s
StringBag a(n);
String s ,  t;
StringBaglterator next(a), loop 1(a), loop2(a);

/ /  some operations on a

F o rw a rd  loop using  th e  i t e r a to r  n e x t

next.reset(); / /  reset the cursor of next to 0
while (next(s)) { / /  get an element

/ /  the loop body, performing operations on s
}

N e ste d  loops

loopl.resetQ; / /  reset the cursor of loopl to 0
while (loopl(s)) { / /  get the current element

/ /  performing operations on s 
loop2.reset(); / /  reset the cursor of loop2 to 0
while (loop2(t)) {

/ /  performing operations on s and t
}

}

loop 1.reset(); / /  reset the cursor of loopl to sero
while (loop 1(b)) ( / /  loop from the first element of a

loop2.reset(loopl.cursor()-l); / /  reset the cursor of loop2 
while (loop2(t) { / /  loop from the current cursor of loopl

}

Figure 10.9 Constructing loops using Baglterator objects

f
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A n e x c e rp t f ro m  th e  V e c to r(T ) c lass d e c la ra tio n

class Vector(T) { 
protected:

struct vector_rep(T) {
T* v;
int n, ref;

} *p;
static ErrorHandler eh; 

public:
Vector(T)(int si, T iv =  (T) 0);
~Vector(T)();
T val(int i);
T& operator()(int i);
Vector(T)& assign(const Vector(T)& r);
Vector(T) copy();
Vector(T) plus(const Vector(T)& r, Vector(T)& rs); 
Vector(T) minus(const Vector(T)& r, Vector(T)& rs); 
Vector(T) negate(Vector(T)& rs);
Vector(T) multiply (const T 1, Vector(T)& rs);
T dot(const Vector(T)& r);
T min();
T max();
T averageQ;
T norm();
Vector(T)& operator= (const Vector (T)& r);
Vector(T) operator+(const Vector(T)& r);
Vector(T) operator-(const Vector(T)& r);
Vector(T) operator-();
Vector(T) operator* (T r);
T operator* (const Vector(T)& r);
friend ostream& operator«(ostream& os, Vector(T)& r); 
friend istream& operator>>(istream& is, Vector(T)& r);

Figure 10.10 A simplified version of the Veetor(T) class declaration
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or more Vector(T) variables. Thus, this structure also holds a counter (the 

member variable ref), to trace how many Vector(T) variables refer to an 

instance at a certain time.

When a Vector(T) object "a" is assigned by another Vector(T) object "b", 

the object "a" refers to the same instance of the data structure as "b", and the 

reference counter of the instance is increased by 1. When a Vector(T) object is 

deleted or is assigned by another object, the reference counter of the data 

structure instance is decreased by 1. When the reference counter of an instance 

of this data  structure is decreased to zero, the instance is then deleted from 

memory.

Prototypes of some selected operation functions and overloaded operators 

of Vector(T) are also shown in Fig. 10.10. These functions and operators define 

many operations between vectors, between vectors and scalars, and for vector 

input/output. Two specific vector classes, IntVeetor and RealVector are defined 

in the object library for integer and floating-point number vectors respectively. 

Operations between matrices and RealVector objects are defined in the matrix 

classes. This will be discussed in the next chapter.
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CHAPTER 11 OBJECT CLASSES FOR FULL MATRICES

11.1 Introduction

Libraries for matrix manipulation are not new. Many of these types of 

libraries have been developed and utilized with varying degree of success. Most 

of the existing libraries have been developed based on conventional functional 

software design approaches as discussed previously in Chapter 3, and they have 

been implemented in procedural languages such as FORTRAN and C. These 

"functionally designed" libraries usually work well for scientific and engineering 

applications where only a limited number of matrix types and matrix operations 

are involved. However, procedural languages such as FORTRAN and C can not 

facilitate optimally the development of a general-purpose matrix library, i.e., 

one in which many different types of matrices and matrix operations are 

supported.

Ideally, a general-purpose m atrix manipulation library should satisfy the 

following requirements:

i. Abstraction: Matrices should be represented as specific "library defined" 

matrix types, rather than by general data types such as multi-dimensional 

arrays. This leads to a  better conceptual clarity of matrix manipulations.

ii. Utilization of M atrix Characteristics: Different characteristics such as 

symmetry and diagonalness should be represented by specific matrix types 

to save storage and to  improve efficiency.

iii. Dynamic Creation and Destruction of Matrices: It should be possible to 

create a matrix of any size and type at run-time whenever the matrix is
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needed. It should also be possible to destroy a matrix and release its 

memory whenever there is no further need for the matrix.

iv. Ease of Use and Expressiveness: Matrix manipulations in an application 

program that uses the library should be as close in form to the 

mathematical matrix expressions as possible. For example, it would be 

desirable to express a matrix operation a s D = A * B + C i n  the application 

program, rather than use one or a series of function calls. Where function 

calls are needed, the names of library functions should be mnemonic.

v. Information Hiding: Any information which relates to implementation 

details such as the manner in which the elements of a matrix are stored, 

should be hidden from software components using the library.

vi. Provision of a Standard Interface: The library should provide a standard 

or unified interface for different matrix types. That is, a certain matrix 

operation can be coded uniquely regardless the types of the matrices 

operated on by the operation. This also leads to greater ease of use of the 

library.

vii. Efficiency: Using this type of library, it should not result in significant 

additional run-time overhead as compared to conventional libraries.

viii. Extendibility: The library should be designed in a way such that new 

matrix types and new operations on matrices can be added to the library 

without affecting existing functions.

Object-oriented programming is the most promising software technique at 

present for satisfication of all the above requirements. A number of matrix 

manipulation packages have been implemented using object-oriented approaches 

and described in the recent literature (Eckel, 1980; Baugh e t al., 1989; Lee, 

1989). Eckel (1989) discusses an object-oriented matrix library implemented in 

the C + +  language. However, only one matrix class is developed and this class
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supports only general full matrix operations. Baugh et al. (1989) have developed 

an object-oriented matrix library containing several object classes for matrix 

operation. However, no details are given about the design and implementation 

techniques, the run-time efficiency, or their implementation language. Lee 

(1989) developed a matrix class in C+-1- in his work. This will be discussed 

further in the next section.

A set of matrix classes for full and sparse matrices are developed in the 

present work. This chapter describes the classes for full matrices, and the next 

chapter describes the classes for sparse matrices. Section 11.2 describes pitfalls 

encountered in the implementation of matrix libraries using conventional 

procedural languages. Section 11.3 provides an overview of the classes for full 

matrices. Section 11.4 presents the design of the Matrix class which is the base 

class for other full matrix classes. Two example derived classes of the Matrix 

class are described in Section 11.5.

11.2 Procedural Libraries for Full Matrices

This section discusses techniques and pitfalls involved with the 

implementation of a matrix manipulation library using the procedural languages 

FORTRAN and C.

11.2.1 Abstraction: the Representation of a  Matrix

The FORTRAN language lacks structure data types. A matrix in 

FORTRAN is usually represented as a  one or two dimensional array. The 

dimensions of the matrix are represented separately by integer variables or 

constants. These integer variables need to be passed to library routines together 

with the array to perform a certain operation. For example, the specification for 

a FORTRAN subroutine th a t performs the matrix multiplication C =  A * B can
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be written as

SUBROUTINE MMULTM(A, B, C, M, K, N)
INTEGER M, K, N
DIMENSION A(M, K), B(K, N), C(M, N)

To use this subroutine, a program must pass the correct dimension parameters 

(i.e., the integer variables M, K, N) together with the arrays to the subroutine, 

and also it must pass in a correct order.

However, in the C language, a data structure can be defined to represent a 

matrix:

typedef struct -MatrixRec { 
int row; 
int col; 
double **a;

} MatrixRec, *Matrix;

Thus, a variable of type MatrixRec or Matrix is an abstract representation of a 

matrix. This abstraction contains the dimensions of the matrix, and once a 

matrix variable is created, the programmer does not have to pass the dimensions 

of the matrix explicitly to the library functions. The specification of a C library 

function performing the m atrix multiplication operation can be written as

int matrix_mult_matrix(a, b, c)
Matrix a, b, c;

The dimensions of the matrices can be checked in the function to determine if 

the multiplication can be performed. The function will return 1 if the operation 

is successful and 0 for failure.

Alternatively, this function may be defined as a function returning a 

Matrix
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Matrix matrix_mult_matrix(a, b)
Matrix a, b;

The matrix holding the result o f the multiplication would be dynamically 

created in the function and then returned from the function. However, 

allocating memory in a library function without an appropriate method ensuring 

that the memory is eventually freed would be disastrous if the function is called 

in a repeated manner.

11.2.2 Dynamic Creation and Destruction of a Matrix

The FORTRAN 77 standard does not support dynamic memory allocation. 

Thus, the coding of matrix operations with matrices whose dimensions can only 

be determined at run time is complicated. Programmers are forced to handle 

dynamic memory allocation in the application. This is usually done by dividing 

a large static array into many small blocks during the program execution. 

Programmers must allocate memory not only for the matrices appearing in the 

matrix expression to be evaluated, but also memory must be allocated for the 

matrices holding possible intermediate results. For example, the FORTRAN 

code evaluating the matrix expression E = A * B  +  C * D  can be written as 

COMMON TEMPSTORAGE(IOOOO)

CALL MEMORYALLOC(M*N, NTM Pl)
CALL MEMORYALLOC(M*N, NTMP2)
CALL MMULTM(A, B, TEMPSTORAGE(NTMPl), M, K, N)
CALL MMULTM(C, D, TEMPSTORAGE(NTMP2), M, K, N)
CALL MADDM(TEMPSTORAGE(NTMP 1),

TEMPSTORAGE(NTMP2), E, M, N)
CALL MEMORYFREE(M*N, NTM Pl)
CALL MEMORYFREE (M* N, NTMP2)

In the above code, MEMORYALLOC  and M EM ORYFREE  are utility 

subroutines implementing the dynamic memory allocation in the large array
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TEMPSTORAGE. As it can be seen from the above code, memory for matrices 

A, B, C, D, and E, as well as for the intermediate results of A * B and C * D 

needs to be allocated. This has to be done explicitly in the code. Too much 

coding effort is involved here. Of course a library routine can be specifically 

designed for evaluating such a matrix expression. Such kinds of routines can be 

found in many FORTRAN libraries. However, many functions of this sort, 

which perform certain "composite" operations, would be needed in a general- 

purpose library. This type of library is not ideal because application 

programmers m ust find their way through a maze of functions. The goal of the 

present work on matrix classes is to develop a general-purpose library avoiding 

the use of a large number of special purpose functions.

The C language supports dynamic memory allocation. Thus, creation and 

destruction of a m atrix variable is easy to perform in C. The code tha t 

evaluates the expression E = A * B - f C * D  can be written as

tm p_m atrixl =  new_matrix(a->row, b->col); 
tmp_matrix2 =  new_matrix(c->row, d->col); 
matrix—mult—matrix(a, b, tm p_m atrixl); 
matrix_mult_matrix(c, d, tmp_matrix2); 
matrix—add_matrix(tmp_matrixl, tmp_matrix2, e); 
free_matrbc(tmp_matrbtl); 
free—matrix(tmp_matrix2);

However, the programmer has to create and destroy the temporary matrices 

explicitly in the code.

11.2.3 Utilization of Matrix Characteristics

Compared with other programming languages, FORTRAN does not 

optimally support the representation of matrix characteristics such as symmetry 

and diagonalness to save storage and improve efficiency. In many FORTRAN 

programs, for example, a symmetric matrix is represented either by a two­
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dimensional or a one-dimensional array. If coded in the first way, the symmetry 

of the matrix is not utilized to save storage. If coded in the second way, the 

matrix element selection from the one-dimensional array is complicated. Library 

routines can be developed based on the one-dimensional array representation. 

However, in general, application programmers have to understand the 

representation in order to allocate the required memory and to access elements 

of the matrix.

If the C language is used, data structures can be defined to represent 

matrices with different characteristics. For example, a data structure SymMatriz 

can be defined to represent symmetric matrices where only the diagonal 

elements and elements in the lower triangle are stored. A data structure 

DiagMatrix can be defined to represent diagonal matrices where only the 

diagonal elements are stored. Implementation details of the manipulation of 

such data structures can be hidden in a  matrix library. However, we then face 

the problem of how to develop library functions to handle mixed operations on 

matrices of different types.

General library functions can be developed for specific operations involving 

matrices of different types. For example, a function matriz-mulL.matrix(a, b, c) 

can be developed for matrix multiplication, where a and b can be matrices of 

any type, and the type of matrix c, which holds the result, depends on the types 

of a and 6. This function can be implemented using a  set of switch and case 

instructions to figure out how the operation be performed. However, this leads 

to a complex and inefficient implementation. Moreover, the addition of a new 

matrix type to the library will mean the modification and recompilation of all 

such functions and may introduce new bugs into the library.

An alternative approach is to develop a set of functions, and have each of 

these functions handle a special case. For example, a function 

dmatrix-mult-smatrix(a, b, c) might handle a diagonal matrix multiplied by a
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symmetric matrix, and smatrix-mult-dmatrix(a, b, c) might handle a symmetric 

matrix multiplied by a diagonal matrix. A very large number of functions 

would need to be developed to handle all possible combinations by this 

approach. This kind of library would not be very usable because programmers 

have to find their way through a maze of functions.

11.2.4 Ease of Use and Expressiveness

According to the above discussion, none of the libraries implemented in 

FORTRAN or C can be said to provide ease of use in general. Moreover, the 

expressiveness of the code cannot be achieved unless the implementation 

language allows operators such as and "*" to be redefined for matrix

types. This, of course, cannot be done in C or FORTRAN.

In summary, matrix libraries implemented in the FORTRAN or C 

language may work well for scientific and engineering applications where only a 

limited number of m atrix types and matrix operations are involved. However, 

these two languages do not provide enough support for the development of a 

general-purpose matrix manipulation library where many different matrix types 

and many different operations are supported. A t the present time, use of 

object-oriented software design methodology and object-oriented languages 

seems to be the most promising approach for the implementation of such a 

library.

However, designing a  matrix library in terms of objects and implementing 

the library in an object-oriented language do not necessarily result in a better 

library. Lee (1989) designed a matrix class in his work. A simplified version of 

the matrix class declaration from (Lee, 1989) is shown in Figure 11.1.
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A n  e x c e r p t  fro m  th e  M A T R IX  class d ec la ra tio n

enum M AT_TYPE { MAT-FULL, MAT-SYMMETRIC,
MAT_LOWER, M AT-UPPER, M AT-BAND };

class MATRIX {
private:

O B-NAM E obName;
M AT_TYPE matType;
INTEGER noRow, noCol;
INTEGER bandwidth;
INTEGER sise;
REAL* body;

public:
MATRIX(char*, M AT_TYPE, INTEGER, INTEGER, char*);
*MATRDC();

PROCEDURE Init(REAL value, ...);
PROCEDURE Save(BLOCK& block, IN TEG ER * cursor);
PROCEDURE Load(BLOCK& block, IN TEG ER * cursor);
M A TRIX* operator =  (REAL R);
M A TRIX*

};
T();

Figure 11.1 A simplified version of the M A TR IX  class declaration 
(from Lee, 1989)
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As shown in the figure, a single class M A TR IX  is defined for matrices with 

different characteristics such as symmetric. Thus, switch and case instructions 

have to be used in the implementation. Problems with this approach have been 

discussed previously. An effort has been made in this work to study the problem 

and to design and implement such a library following the object-oriented 

methodologies.

11.3 Overview of Full Matrix Classes

11.3.1 Classification

Six object classes for representing full matrices are developed in the 

present work. These classes are:

1. The Matrix class, which represents full matrices that do not have any 

special characteristics. This class also serves as the base class for other 

specific matrix classes. It maintains the properties that are common to all 

matrix classes, such as the dimensions of a matrix. It implements methods 

tha t are common to all m atrix classes.

2. The DMatrix class, which represents diagonal matrices. Only the diagonal 

elements are stored for this type of matrix.

3. The SMatrix class, which represents symmetric matrices. Only the 

diagonal elements and the lower triangle elements are stored in this case.

4. The LTMatrix class, which represents lower-triangle matrices. Only the 

diagonal and lower triangle elements are stored.

5. The UTMatrix class, which represents upper-triangle matrices. Only the 

diagonal and upper triangle elements are stored.

6. The LUMatrix class, which is used to create objects for storing the 

decomposed form LU for any type of matrix. The matrix factor L is
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stored in the diagonal and lower triangle of a LU M atrix  object, and the 

matrix factor U is stored in the upper triangle.

The type of matrix elem ents is defined as R eal  and can be specified as 

either f loa t  or double at compilation time.

11.3.2 Matrix Manipulation Functions

Functions in the matrix classes for manipulation of full matrices may be 

classified either in terms of member functions and friend functions or in terms of 

operation functions and overloaded operator functions. These functions can be 

further classified according to the operations they perform:

1. Constructors, Destructors and Coercion Functions: Constructors of a

m atrix class are used for creation and initialization of matrix objects of 

that class. Only one destructor can be defined for a class. The destructor 

is used to clean up and destroy matrix objects of tha t class. For each 

matrix class, a coercion function is defined and used to convert objects of 

other matrix classes to objects of tha t class.

2. Element Selection Functions: These functions provide ways to access an 

element, a  row of elements, or a  column of elements in a matrix directly.

3. Matrix Operation Functions: These functions perform operations on

matrices such as addition, subtraction, multiplication, decomposition, and 

taking the inverse, as well as m atrix and vector mixed operations. These 

functions may be of the type of a certain matrix class, of the RealVector 

type, or of the Real type depending on the operation. A function is said to

be of a certain type when the function returns an object of that type.

4. Utility Functions: Utility functions are used for matrix I/O , error

handling, and other miscellaneous operations.



www.manaraa.com

222

In the design of these functions, if more than one function performs a 

similar operation on objects of different matrix classes, these functions are given 

syntactically the same specification. For example, the operation of computing 

the product of a scalar with a matrix is defined in most matrix classes, and the 

specification of all these functions are defined in the following form:

matrix: :product(matrix& Ip, const R eal rp);

where matrix stands for the name of a specific class to which the product 

operation function is defined.

11.3.3 Use of Two Interfaces for Matrix Operations

The results of many matrix operation functions are matrix objects of 

certain classes. Two rules are followed in the design of such matrix operation 

functions: (1) a function which returns an object of a certain matrix class should 

be defined as a member function of tha t class; and (2) the matrix object through 

which a member function of this type is invoked holds the result of the 

operation. For example, the result of multiplying a scalar with a symmetric 

matrix is a symmetric matrix. The function that implements this operation 

should be defined as a member function of the SMatrix class. Thus, the 

prototype of this function is

SMatrix SMatrix::product(SMatrix& Ip, Real rp);

This function can be used in the form 

s.product(sm, c);

where am, a SMatrix object, and c, a scalar, are the operands, and s, a SMatrix 

object, holds the result of the operation. These rules facilitate the 

implementation of operator overloading for matrix operations.

Many operators such as +, —, *, / ,  + =  are overloaded for matrix classes. 

As a result, matrix operations can be coded in a more abstract and expressive
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fashion. Thus, there are two types of functions defined in a matrix class: 

operation functions and operator functions. An operation function of a class is 

invoked through an object of the class by referencing the name of the function. 

The function SMatrix:.'product described above is a typical example of an 

operation function. An operator function is invoked by applying an operator to 

an object of the class. In the present development, operator functions are 

implemented based on operation functions. Thus, there are two interfaces for 

most m atrix operations based on one implementation. One interface consists of 

operation functions and is referred to as the function interface. The other uses 

operator functions and is referred to as operator interface.

For example, the operator * is overloaded to perform the operation of 

multiplying a scalar with a symmetric matrix as discussed above. This is done 

by defining two operator functions: one is a member function and the other is a 

friend function of the SMatrix class. The prototype of the two operator 

functions is

SMatrix SMatrix::operator*(const Real rp);

friend SMatrix operator* (const Real lp, SMatrix& rp);

Two operator functions are defined because C ++ invokes a  member operator 

function based on the left operand. Thus, if 8 is a SMatrix object and c is a 

Real variable, the operation 8 * c invokes the member operator function. For 

the operation c * s, a friend operator function should be defined. The two 

operator functions are implemented by simply creating a temporary SMatrix 

object and then invoking the operation function product

SMatrix SMatrix: :operator*(const Real rp)

SMatrix rs(p->row);
return rs.SMatrix::product(*this, rp);

}
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SMatrix operator*(const Real lp, SMatrix& rp)
{

SMatrix rs(rp.p->row);
return rs.SMatrix::product(rp, lp);

}

In the member operator function, *thts refers to the object by which the 

function is invoked.

The differences in the use of the two interfaces are as follows:

1. The operator interface is much easier to use than the function interface 

because programmers do not have to remember function names to code 

matrix operations. Also, by using the operator interface, the code will be 

more expressive and abstract.

2. Programmers are forced to create temporary objects to hold operation 

results if operation functions are used. Temporary objects are 

automatically created when operator functions are used. These temporary 

objects will be automatically destroyed when they are no longer needed.

3. Because a temporary object is created each time tha t an operator function 

is called (this is the case for most operator functions), more CPU-time is 

needed for using an operator function than for using the corresponding 

operation function.

If an application is computationally intensive and the efficiency largely depends 

on certain m atrix operations, the function interface should be used for these 

operations. Otherwise the operator interface is recommended.

11.3.4 Extensibility

These matrix classes are readily extensible. New classes for matrices with 

other characteristics such as tri-diagonalness may be developed as derived classes
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of the Matrix class. New operations such as eigenvalue and eigenvector 

computation may be implemented to the existing classes. No modification of the 

existing classes is necessary for such extensions. Also, the development of a new 

matrix class is eased by taking the Matrix as a base class because only operations 

tha t take the advantage of the characteristics of matrices the new class 

represents need to be implemented.

11.4 Design of the Matrix Class

This section describes the design details of the Matrix class. The Matrix 

class represents general full matrices and implements operations on general 

matrices. Figure 11.2 shows a simplified version of the Matrix class declaration, 

where the prototypes of some member functions are not shown for conciseness.

11.4.1 Matrix Representation

The Matrix class declaration contains the representation for a general 

matrix object, i.e., a pointer to a data structure matriz-representation as shown 

in Fig. 11.2. This structure contains the following information about a matrix: 

(1) row and col are number of rows and columns; (2) re / is the reference count to 

be discussed below; and (3) a is a  pointer to an array of pointers which is 

dynamically allocated. Each entry in the array is a pointer to m atrix elements 

in a row which are also dynamically allocated. Matrix objects only contain a 

pointer to this structure. This representation is adopted from the m atrix class 

developed by Eckel (1980).

The representation is inherited by the classes derived from Matrix. The 

only difference between different matrix classes is th a t only the necessary storage 

for the matrix elements is allocated and pointed to by a. The amount of 

memory allocated and the way the elements being stored depends on the
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A n e x c e rp t f ro m  th e  M a tr ix  class d e c la ra tio n

class Matrix { 
protected:

struct matrix_representation { 
int row, col, ref;
Real** a;

} *p;
static ErrorHandler eh; 

public:
Matrix(int re, int cc, Real* iv);

Matrix(const Matrixfe x);
- Matrix();
virtual Real val(int i, int j); 
virtual Real& operator()(int i, int j);
Real* operator [j (int i);
Matrix assign(Matrix& rp);
Matrix plus-assign(Matrix& rp);
Matrix multiply_assign(const Real rp);
Matrix negate(Matrix& rp);
Matrix transpose(Matrix& rp);
Matrix sum(Matrix& lp, Matrix& rp);
Matrix difference(Matrix& lp, Matrix& rp);
Matrix product(Matrix& lp, Matrix& rp);
RealVector multiply_rv(RealVector& rp, RealVector& rs);
Matrix quotient(Matrix& lp, const Real rp);
Matrix operator= (const Real rp);
Matrix operator=(M atrix&  rp);
Matrix op era tor+ =  (Matrixfe rp);
Matrix operator*= (const Real rp);
M atrix operator-();
Matrix operator/(Real rp);
M atrix operator* (Real rp);
M atrix operator- ();
friend Matrix operator* (const Real lp, Matrix& rp);
friend Matrix operator* (RealVector& lp, RealVector& rp);
friend Matrix operator+(Matrix& lp, Matrix& rp);
friend M atrix operator*(Matrix& lp, Matrix& rp);
friend RealVector operator* (Matrix& lp, ReaIVector& rp);
virtual LUMatrix decompose(LUMatrixfe rp, Real tol =  (Real) 0.0001);

/ /  constructor

/ /  copy-constructor 
/ /  destructor

Figure 11.2 A simplified version of the Matrix class declaration



www.manaraa.com

characteristics of each matrix class. This is referred to as the storage 

architecture of a matrix class. For the Matrix class, memory is allocated for 

every element of a full matrix.

Many matrix operation functions return a Matrix object which holds result 

of the operation. Temporary Matrix objects are often generated by operator 

functions. Matrix objects may be also passed by value to a function (however, 

matrix objects are always passed by reference for all matrix classes developed in 

the present work). By adopting this representation when matrix objects are 

passed to and returned from functions, only a pointer is transferred to or from 

the functions. This leads to a simple and efficient implementation.

However, the problem with this representation is that care must be taken 

to release the memory in the free storage occupied by a "dead" object and not to 

release the memory from the free storage utilized by "live" objects. This task is 

accomplished by the use of the field re / in the structure matriz-representation. 

The field ref is called the reference count. It indicates how many objects are 

currently using a particular instance of the data structure.

When a matrix object is created, for example as a temporary object, the 

memory for an instance of the structure is allocated according to the dimensions 

and the class of the object, and the reference count of the instance is set to 1. 

When this object is assigned to another object of the same matrix class, the 

object being assigned will refer to the instance of the structure and the reference 

count is increased by 1. This avoids the copying of all matrix elements for 

simple assignments. A member function, eopy, is provided in each matrix class 

to actually make a copy of a matrix object when desired. When a matrix object 

is destroyed or the memory reference of the object is changed, the reference 

count of the associated instance of this data structure is decreased by 1. When 

the reference count of an instance of this structure is decreased to zero, the 

instance will be deleted.
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11.4.2 Matrix Operations

Table 11.1 summarizes the operator and the function interface for the 

operations implemented in the Matrix class. Because the Matrix class serves as 

the base class for other specialized matrix classes, the operations implemented in 

this class are inherited by derived classes of Matrix. Mixed operations between 

matrix objects of different classes must be taken into account in the design and 

implementation of these operation functions.

A derived class may define its own member and friend functions which 

have the same names as those defined in Matrix class. Such functions are 

considered as different functions than the ones defined in Matrix. When an 

operation or operator function is invoked through an object of a derived class, 

the function defined in the Matrix class will be used if the function is not defined 

in the derived class. If the function is not defined in Matrix class either, the 

function call generates an error at compilation time. If a function defined in 

Matrix is used to operate on a matrix object of a derived class, no advantage can 

be taken from special characteristics of the derived class such as symmetry. 

Operations th a t take advantage of the characteristics of a certain derived matrix 

class should be defined in the derived class. For example, the addition of a 

symmetric matrix and a diagonal matrix results in a symmetric matrix. Such an 

operation, if it is desired, should be defined in the SMatrix class.

According to the above discussion, the operation functions implemented in 

the Matrix class may be used to operate on objects of derived classes of which 

the actual storage architectures are unknown to Matrix. This causes a problem 

in the definition of these functions. The problem is how these functions work on 

objects having unknown storage architectures. The key to solving this problem 

is the virtual function mechanism of the C + +  language.

As can be seen from Figure 11.2, the operation function valfint i,int j )  and 

the operator function operator()(int i,int j )  are virtual. These two functions are
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Table 11.1. Interface of the Matrix  class

Operator Interface Function Interface Explanation

M(i, j) M.val(i, j) element selection

A[i] — matrix row selection

M =  A M.assign(A) coercion function

M =  c M.assign(c) assigning the same value to all elements of M

M + =  A M.plus-assign (A) adding matrix A  to M

M - =  A M.minus_assign(A) substrating matrix A from M

M * =  c M.multiply_assign(c) multiplying a scalar c to M

- A T.negative(A) negative of matrix A.

A /  c T.quotient(A, c) dividing matrix A  by a scalar c

A *  c T.product(A, c) multiplying matrix A  with a scalar c

'A T.transpose(A) matrix transposition.

c * A T.product(A, c) multiplying a scalar c with matrix A

v “u T.assign(v, u) T =  vuT

A +  B T.sum(A, B) matrix summary.

A - B T.difference(A, B) matrix difference.

A  * B T.product(A, B) matrix product.

A  * v A.m ultiply_rv(v, t) right-multiplying vector v with matrix A

v * A A.m ultiply_lv(v, t) left-multiplying vector v with matrix A

— M.make_copy(A) copying A  to M

— M.copy() generating a copy of M 
in a temporary M atrix  object

— M.decompose(L, tol) decomposing matrix M

— M.decompose(tol) decomposing matrix M and storing it 
in a temporary LUMatrix object.

— triple_product(v, A, u) triple product vTAu.

Symbols: M: an object of M atrix  class. T: a temporary object o f M atrix  class.
A, B: objects o f any matrix class. L: an object o f  LUMatrix class.
u, v , w: objects o f RealVector class, t: a  temporary object o f RealVeetor class.
c: a scalar variable of type Real.
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used for selecting elements of a matrix. The two parameters i and j  are the row 

and column indices of a matrix element respectively. Both functions are 

declared inline for efficiency. The usages of the two functions are different. The 

function val returns the value of the element (i,j) without index checking. 

Moreover, if the element referred to by the two indices is actually zero (e.g., if j  

>  « in a reference to an element of a lower-triangle matrix), zero will be 

returned. The operator function operatorQ returns a reference to the element 

being selected with index checking. Thus, the call to this function can be used 

as an lvalue to change the contents of the element being referred to. Moreover, 

if the element referred to by the two indices is actually zero and is not stored 

according to the storage architecture of the object, an error will be reported by 

calling the error reporting function error through the static member eh.

The two functions, val and operatorQ, must be defined by a derived class if 

the derived class uses a different storage architecture from the Matrix class. An 

operation function of the Matrix class uses the function val(int i,int j )  to access 

elements of a matrix object passed to the function, if the object may be of a 

derived class. Moreover, the coercion function of each matrix class also uses the 

function val to convert a m atrix object of any other class to an object of its 

class. Thus, by the use of the virtual function mechanism, these functions are 

able to operate on objects with unknown storage architectures. This facilitates 

the implementation of mixed operations between different matrix classes.

11.5 Design of Derived Classes

Two derived classes of the Matrix class, the SMatrix class for symmetric 

matrices and the LUMatrix class for objects which store decomposed matrices, 

are described in this section.
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11.5.1 The SMatrix Class

The SMatrix class represents symmetric matrices. It inherits the properties 

defined in the Matrix class, and it does not define any new properties of its own. 

Only the diagonal and lower-triangle elements of a symmetric matrix are stored 

in a SMatrix object. Because the function prototypes contained in the SMatrix 

class declaration are very similar as those in the Matrix class declaration, the 

SMatrix class declaration is not shown here.

In addition to the operation functions inherited from the Matrix class, the 

SMatrix class defines a number of operation functions utilizing the symmetry 

characteristic to achieve computational and storage efficiency. Table 11.2 lists 

some typical operation functions of the SMatrix function interface and the 

corresponding operator interface. One im portant component that should be 

highlighted is the coercion function of the SMatrix class, 

SMatrix::a8sign(Matrix&). This function is used when a matrix object of any 

class is assigned to a SMatrix object. Only the diagonal and lower-triangle 

elements of a matrix object are copied to the SMatrix object. The elements of 

the upper-triangle of the SMatrix are determined by symmetry.

11.5.2 The LUMatrix Class

The LUMatrix is a special m atrix class used solely for creating objects to 

hold the decomposed form of m atrix objects of any other class. Assumptions are 

made in the design of the LUMatrix that: (1) a full matrix is needed to stored 

the decomposed form of a matrix of any class; and (2) the solution of linear 

simultaneous equations and calculation of the inverse of a matrix can only be 

performed through a LUMatrix object th a t stores the decomposed form of the 

matrix. These assumptions lead to a standard interface for solving linear 

simultaneous equations and for matrix inversion. A simplified version of the 

LUMatrix class declaration is shown in Figure 11.3.
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Table 11.2 Interface of the SMatr ix class

Operator Interface Function Interface Explanation

S(i, j) S.val(i, j) element selection

S =  c S.assign(c) assigning a scalar c to all elements of S
— S.assign(v) S =  vvT

S =  Y S.assign(Y) assigning an SMatrix to another

S =  M S.assign(M) coercion function

S + =  Y S.plus_assign(Y) adding a SMatrix to another

S - =  Y S.minus_as8ign(Y) substrating a SMatrix from another

S * =  c S .multiply_assign (c) multiplying a scalar to a SMatrix

— S.product-assign(M) S =  Mt M

S + D T.sum(S, D) sum of a SMatrix and a DMatrix.

S -  D T.difference(S, D) difference of a SMatrix with a DM atrix

D -  S T.difference(D, S) difference of a SMatrix with a DMatrix

S -  Y T.difference(S, Y) difference of two SMatrix objects.

S * c T.product(S, c) multiplying a SMatrix with a scalar

c * S T.product(S, c) multiplying a SMatrix with a scalar

S / c T.quotient(S, c) dividing a SMatrix by a scalar
— S.triple_product(M, S) S =  Mt SM
— S.triple_product(M, D) S =  Mt DM
— S.decompose(L, tol) decomposing S and stored in L

Symbols: M: an object of any matrix class.
S, Y, R: objects of SMatrix class. T: a temporary object of SMatrix class. 
D: an object of DM atrix  class. L: an object o f LUMatrix class, 
v: objects of RealVeetor class, 
c: a scalar variable of type Real.
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A n e x c e rp t f ro m  th e  L U M atrix  c lass d e c la ra tio n

class LUMatrix : private Matrix { 
public:

short bad;
LUMatrix(int sz);
LUMatrix(const LUMatrix& x); 
int row_count(); 
int col_count(); 
int is_bad();
LUMatrix assign(LUMatrix& rp);
LUMatrix operator=(LUMatrix& rp);
Real determinant();
Matrix inv(Matrix& rs);
Matrix inverseQ;
RealVector solve(RealVector& rp, RealVector& rs); 
friend RealVector operator/(RealVector& Ip, LUMatrix& rp); 
void print(ostream& os =  cout); 
int read(istream& is =  cin);

Figure 11.3 A simplified version of the LUMatrix class declaration
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A new member variable, bad, is defined in the LUMatrix class as shown in 

the figure. This variable is a flag indicating whether the decomposition of a 

matrix, of which the LUMatrix object is the result, is successful or not. Unlike 

other derived classes for which the Matrix class is the public base class, the 

Matrix class is declared as a private base class of LUMatrix. Thus, none of the 

operation or operator functions defined in Matrix can be applied to a LUMatrix 

object. This avoids possible meaningless operations on an LUMatrix such as 

adding two decomposed matrices. Only the operation functions and operator 

functions defined in the LUMatrix class can be used to operate on an LUMatrix 

object. These operations include : (l) solving linear simultaneous equations; (2) 

inverting a matrix; and (3) calculating the determinant of a matrix.

It should be noted tha t in the definition of the classes Matrix and SMatrix, 

there are exceptions to the rule stated previously that a function which returns 

an object of a certain m atrix class should be defined as a member function of 

that class. The functions which decompose a Matrix object or a SMatrix object 

and return a LUMatrix object are not defined as member functions of the 

LUMatrix class. Instead, they are defined as member functions of the Matrix 

and SMatrix classes respectively. The reason for doing this is that the matrix 

decomposition process cannot be performed efficiently without knowning the 

storage architecture of the matrix class.

To illustrate the use of the LUMatrix class, Figure 11.4 shows an example 

program for solving linear simultaneous equations. This example program also 

shows the abstract nature and the expressiveness of coding with these matrix 

classes.

11.6 Benchmark Testing and the Matrix Calculator

Two sets of benchmark tests have been conducted on a Sun 3/60 

workstation to test the efficiency of the matrix classes developed in the present
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# inc lude  "m atrixC C .h"

int
main()
{

int n; / /  dimension of the matrix
cin > >  n; / /  read the dimension
Matrix M(n, n); / /  create a M a trix  object
RealVector R(n); / /  create a R ea lV ec to r object as the right-hand-side vector
cin > >  M; / /  read in the matrix from standard input
LUMatrix L =  M.decompose(); / /  create a L U M atrix  to hold the decomposed matrix 
if (! L.is_bad()) { / /  if the decomposition is successful

cin > >  R; / /  read in the right-hand-side vector
RealVector S =  R /  L; / /  solve the equation and create a

/ /  R ea lV ec to r object to hold the solution 
cout «  "The solution" < <  S; / /  print the solution
cout < <  "Verify the solution” «  M*S; / /  verify the solution 

} else {
cout < <  "Singular Matrix";

}

Figure 11.4 An illustration program of the LUMatrix class
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work. Programs have been implemented in the FORTRAN, C and C++ 

languages for a number of matrix operations. In the C ++  implementation, both 

the function and operator interfaces have been used. All calculations in the 

benchmark tests have been performed using double precision. All these 

programs are compiled without any of the optimization options of the 

FORTRAN, C, or C + +  compilers. The C + +  programs for the second test case 

are listed in Figure 11.5. Complete listings of other test programs can be found 

in (Zhang et al., 1990a).

The first test is to evaluate the m atrix expression S =  D * B for 2000 

times, where the matrix D is 5 by 5, and B is 5 by 10. Table 11.3 compares 

CPU times used by the programs.

The second test is to evaluate the m atrix expression S =  BTDB for 1000 

times, where the matrix D is 5 by 5 and symmetric, and B is 5 by 10. The 

symmetry characteristics of the matrices S and D are utilized in the 

computation. Table 11.4 compares CPU times used by these programs.

From the testing results it can be seen th a t the programs implemented in 

C ++  using the function interface are slower in both cases than the programs 

implemented in FORTRAN and C. In the first case, the C + +  program uses 

24% and 46% more time than the FORTRAN and C programs respectively, and 

in the second case, it uses 17% and 23% more time than the FORTRAN and C 

programs respectively. This is a reasonable price to pay for the benefits of using 

the C + +  language.

Also it can be seen tha t the operator interface is less efficient than the 

function interface. The reason for this is the creation and destruction of 

temporary matrices. A temporary matrix is created and destroyed each time 

when a matrix expression is evaluated in the first case, and two temporary 

matrices are created and destroyed in the second case. Moreover, in the second 

case, the symmetry characteristic of the matrix D and the resulting matrix is not
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Benchmark testing o f the function interface

#include "matrixCC.h" 
main()
{

int m, n, t;
cin »  m »  n > >  t;
Matrix b(n, m);
SMatrix d(n, n);
SMatrix s(m, m); 
cin »  b »  d; 
int i =  t; 
while (i—)

s.triple_product(b, d);
}

Benchmark testing o f  the operator Interface

#include "matrixCC.h" 
main()
{

int ID) n, tj
cin »  m »  n > >  t;
Matrix b(n, m);
SMatrix d(n, n);
SMatrix s(m, m); 
cin »  b »  d; 
int i =  t; 
while (i—)

s =  *b * d * b;
}

Figure 11.5 The C++ benchmark testing programs for Case 2
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Table 11.3 Efficiency of S =  D * B (Case 1, 2000 operations)

Language CPU (seconds)

FORTRAN 33

C 28

C++ (function interface) 41

C++ (operator interface) 45

Table 11.4 Efficiency of S =  BTDB (Case 2, 1000 Operations)

Language CPU (seconds)

FORTRAN 42

C 40

C++ (function interface) 49

C++ (operator interface) 84
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utilized. The evaluation of the right-hand-side of the expression results in a full 

matrix. Then the full matrix is assigned to the symmetric matrix S by the 

coercion function of the SMatrix class.

A matrix calculator has been developed using the matrix library. This 

program named Mac is used to perform matrix operations in an interactive 

mode. The initial purpose for the development of Mac is to test the 

implementation of these matrix classes. A comprehensive testing for these 

classes cannot be performed without a general tool. However, such a tool is also 

convenient and useful for doing simple matrix related calculations. Figure 11.6 

is a script showing the use of Mac for solving a linear simultaneous equation. 

The text after the double hyphens " is an explanation of the script. A 

complete listing of the syntax of the Mac user-interface can be found in (Zhang 

et al., 1990a). The operator interface of the matrix classes is used in the 

implementation of Mac.
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%  mac starts Mac
mac >  smatrix s0(4) — defines a symmetric matrix sOR
mac >  read sO -- input sO
4.
2. 5.
0. 2. 6.
3. 2. 1. 4.
mac >  lumatrix ls(4) — defines a decomposed matrix Is
mac >  Is =  decompose sO — decomposes sO and stores it in Is
mac > vector vl(4) — defines a vector vl
mac > read vl — input v l
2. 2.5 3.3 4.5
mac >  vector xl(4) — defines a vector xl
mac >  xl =  v l /  Is — solve the equation and save solution in x l
mac > print xl — print xl
Vector (4) ref =  2
0: -0.678571
1: 0.042857
2: 0.278571
3: 1.542857
mac >  print sO * xl — print sO * xl
Vector (4) ref =  1
0: 2.000000
1: 2.500000
2: 3.300000
3: 4.500000
mac >  print x l * sO — print x l * sO
Vector (4) ref =  1
0: 2.000000
1: 2.500000
2: 3.300000
3: 4.500000
mac >  bye - exit Mac
%

Figure 11.6 A script shows the use of the matrix calculator Mae

f
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CHAPTER 12 OBJECT CLASSES FOR SPARSE MATRICES

12.1 Introduction

Many scientific and engineering programs employ software components 

th a t manipulate sparse matrices. These components are often intertwined with 

other components. Problems associated with this approach are: (l)  the matrix 

manipulation components are not readily reusable by other software because 

knowledge about the internal details of a component are necessary in order to 

use it; (2) the component can not be easily replaced by a different component, 

and, therefore, the software can not utilize new techniques for sparse matrix 

manipulation easily. Sparse matrix manipulation components based on different 

storage schemes usually lack a unified or standardized interface th a t would 

make these components interchangeable.

Therefore, two main principles should be emphasized among others in the 

design of software components for sparse matrix manipulation: encapsulation 

and provision of a standard interface. Implementation details about a certain 

storage scheme are hidden such th a t its use does not require any knowledge of 

its implementation. Changes in sparse matrix components will therefore not 

affect other components. A standard interface containing a unique 

correspondence between matrix manipulations with function specifications 

among different components implementing different schemes makes these 

components interchangeable. A component implementing a particular scheme 

may be replaced by another without affecting other components in an 

application. Moreover, it is also possible to link components th a t provide 

different schemes with an application, and to interactively select the scheme to 

achieve the optimum efficiency for a  particular computation at runtime.
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This chapter presents the object classes for sparse matrix manipulation 

developed in the present work. Section 12.2 describes pitfalls encountered in the 

implementation of sparse matrix manipulation components implemented in 

conventional procedural languages. Section 12.3 provides an overview of the 

classes for sparse matrices. Section 12.4 presents the design of the Sparse class 

tha t provides a standard interface for node-based sparse classes. Sections 12.5 

and 12.6 describe two derived classes of the Sparse for two different sparse 

storage schemes. Finally, Section 12.7 describes a testing case for the two 

classes.

12.2 Sparse Matrix Manipulation in Procedural Languages

There are many implementations of sparse matrix manipulation packages 

designed following functional approaches and implemented in FORTRAN. The 

specification of a set of subroutines implementing the active column scheme (i.e., 

the skyline scheme) is chosen as an example and shown in Figure 12.1. This 

specification is summarized from a finite element program STAP listed in 

(Bathe, 1982). The parameter lists of the subroutines listed in this figure are 

modified by the author so tha t the communications among these subroutines 

and applications using these subroutines are only via parameter lists.

This set of subroutines is used in an application in the following steps:

1. The array M H T  for the heights of columns in the sparse matrix is first 

allocated by the application using the approach described previously in 

Chapter 11. The subroutine COLHT  is then called for each set of 

unknown connectivities (or elements) to calculate the column heights.

2. The array M AXA  is allocated. The addresses of diagonal elements in the 

array A  for the sparse matrix are calculated from MHT. The length of A, 

NW K, is also calculated.
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SUBROUTINE COLHT(MHT, NEQ, LM, ND)
— to calculate column heights from unknown connectivity

SUBROUTINE ADDRESS(MAXA, NNM, MHT, NEQ, NWK)
— to calculate addresses of diagonal elements in the array
— storing the sparse matrix whose column heights are known

SUBROUTINE ADDBAN(A, NWA, MAXA, NNM, S, LM, ND)
— to assemble a sub-matrix into the sparse matrix

SUBROUTINE COLSOL(A, V, MAXA, NEQ, NWK, NNM, KKK)
— to decompose the sparse matrix and
— to solve a set of linear simultaneous equations

Formal parameters: 
integer NEQ 
integer NNM 
integer NWK 
integer ND 
integer MHT(NEQ) 
integer MAXA(NNM) 
integer LM(ND) 
real A(NWK) 
real V(NEQ) 
real S(ND*(ND+l)/2) 
integer KKK

number of unknowns of the linear equations system 
NEQ+1
the sice of the array storing the sparse matrix
dimension of sub-matrices
an array storing active column heights
an array storing addresses of diagonal elements
the unknown connectivity array
the array storing the sparse matrix
the right-hand-side vector and the solution vector
the array storing sub-matrices
a flag for the subroutine COLSOL,
KKK =  1, for decomposition of the sparse matrix 
KKK =  2, for solving the equations

Figure 12.1 Specification of a  set subroutines implementing the skyline scheme

f
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3. The array A is allocated for storing the sparse matrix and sub-matrices are 

assembled to the sparse matrix by calling the subroutine ADDBAN.

4. The subroutine COLSOL is called with K K K  being 1 to decompose the 

sparse matrix.

5. The subroutine COLSOL is called with K K K  being 2 to solve a set of 

linear simultaneous equations.

The problems involved with the use of this set of subroutines are apparent:

• The abstraction level is low in that the sparse matrix is represented not as 

a single variable but a set of arrays and variables. Programmers must 

allocate memory for each of the arrays explicitly and to pass these arrays 

and other variables to these subroutines in a correct order.

• No information about the sparse matrix can be hidden unless strict rules 

are enforced in the use of this set of subroutines.

• It is difficult if not impossible and meaningless to design a standard 

interface for components of this sort for different sparse storage schemes. 

This is because an application is responsible for the memory allocation of 

the arrays used by the component implementing a particular storage 

scheme.

A similar functional approach may also be implemented in the C language.

Nevertheless, a certain level of abstraction and a certain degree of 

information hiding may be achieved by the use of modularity in the FORTRAN 

and C languages. The object-oriented approach may also be followed in these 

languages to develop a sparse matrix manipulation component. Figure 12.2 

shows an object-oriented design of a sparse matrix component implementing the 

skyline scheme in the C language.
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typedef enum { created, realized, assembled, decomposed } SMstate;

typedef struct -Sparse {
SMstate s; /* state of the sparse matrix */
int ec; /* number of unknowns */
int* colh; /* height of each column */
double** a; /* pointer to the matrix elements */
int (*new_sparse)(Sparse sp, int n); 
int (*connectivity)(Sparse sp, int * uc); 
int (*realise)(Sparse sp);
int (*assemble)(Spar8e sp, double** sub-matrix, int* uc);
int (*decompose)(Sparse sp);
int (*solve)(Sparse sp, double* r, double* s);

} SparseRec, ’Sparse;

Functions contained in the structure:
new-sparse: to create and initialise an instance of the SparseRec structure
connectivity: to calculate the column height from unknown connectivity
realize: to allocate memory for the sparse matrix
assemble: to assemble a sub-matrix to the sparse matrix
decompose: to decompose the sparse matrix
solve: to solve a set of linear simultaneous equations

Parameters passed to these functions:
int n 
int* uc
double** sub-matrix 
double* r 
double* s 
Sparse sp

number of unknowns
a pointer to an unknown connectivity array 
a pointer to a sub-matrix 
the right-hand-side vector 
the solution vector
pointer to a Sparse instance to be operated on

Figure 12.2 An object-oriented design of a sparse matrix component in C
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The data structure shown in Fig. 12.2 defines a self-sufficient object class. 

The approach of self-sufficient objects was discussed previously in Chapter 4. 

The problem associated with this approach is tha t every instance of a class 

physically contains references to all functions that may be applied to it. This 

leads to memory overhead if many objects are created for an application. 

However, only a few number of sparse matrices are usually used in many 

applications. Thus, this design is reasonable for such applications.

The design listed in Figure 12.2 is definitely better than the functional 

design listed in Figure 12.1. A sparse matrix is represented as an instance of 

type jSparseRec, and the necessary variables to represent the sparse matrix are 

bound together in the structure. Also, the structure contains a state variable, s, 

so the instance remembers its own state that can be used to direct operations on 

the instance. Applications are relieved from handling memory allocation for the 

sparse matrix performed here by functions contained in the structure. However, 

strict rules are still necessary to avoid applications to access the variables 

contained in the structure.

A standard interface for components implementing different sparse matrix 

storage schemes may also be achieved. However, this is done by following strict 

rules or disciplines in the design of these components rather than enforced by 

the compiler of the implementation language. Also, it is very difficult, if not 

impossible, to link functions for different storage schemes having a standard 

interface with an application in FORTRAN and C because a  single name cannot 

be used for more than one function, i.e., function names cannot be overloaded. 

W ith the object-oriented methodology and object-oriented language, these 

problems can be well solved.
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12.3 Overview of Sparse Matrix Classes

The abstract class facility o f the C + +  language is used in the design of the 

classes for sparse matrix m anipulation. As discussed previously in Chapter 4, an 

abstract class is used to provide a framework and a standard interface for object 

classes representing a set of similar abstractions.

There are two types of abstractions of sparse matrices: unknown based 

and node based. In the first type, the unknowns of a linear simultaneous set of 

equation for which the coefficient matrix is a sparse matrix are represented as a 

vector of scalar variables. Entries in the sparse matrix are scalar elements.

In the second type, scalar unknowns are grouped into many sets consisting 

of several unknowns. These sets are referred to as nodes. The unknowns 

associated with a nodal point in a finite element analysis are an example of such 

a set. In the node based abstraction, unknowns of the linear simultaneous 

equations are represented as a vector of sub-vectors. The sparse matrix of the 

linear simultaneous equations is represented as a super-matrix because each of 

its elements is a sub-matrix. The node-based abstraction is more meaningful 

than the unknown-based one for some applications.

Both types of abstraction are implemented in the present work, and each 

corresponds to an abstract class. For a specific sparse storage scheme, a class can 

be derived from an appropriate abstract class. However, only the node-based 

classes are described here.

The abstract class representing the node-based sparse matrix abstraction is 

named Sparse. It specifies the standard interface for node-based sparse matrix 

abstractions. However, classes derived from this class do not necessarily have to 

be implemented based on sub-matrices. Currently, two derived classes of the 

Sparse class have been developed: the ActiveColumn class and the SGraph class.
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The ActiveColumn class implements the active column storage scheme 

(Bathe, 1982). The SGraph class implements the graph-based storage scheme 

developed by Shi (1990). The most significant feature of this scheme is tha t the 

efficiency of solving linear simultaneous equations depends only slightly on the 

numbering of the nodes. This aspect will be discussed further in detail in Section 

12.6.

12.4 Design of the Sparse Class

A simplified version of the Sparse class declaration is listed in Figure 12.3, 

where the prototype of some member functions is not shown to save space. A 

complete listing may be found in (Zhang et al., 1990a).

12.4.1 Representation of Sparse Matrices

Sparse is an abstract class. It represents the general sparse matrix 

characteristics to any particular sparse matrix storage scheme. It is used as a 

base class for classes implementing different sparse matrix storage schemes. No 

assumption is made about the storage scheme by this class, and the m atrix can 

be symmetric or non-symmetric. Since Sparse is an abstract class, no object of 

Sparse can be created. However, objects of any of its derived classes can be 

represented as objects of the Sparse class. As a result, all such objects can be 

manipulated in the same way, with the exception of their creation. This aspects 

is demonstrated in the example application described in Section 12.7.

12.4.2 States of Sparse Objects

An object of a class derived from the Sparse class is referred to as a Sparse 

object. A Sparse object can exist in one of the following five states after it is
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An excerpt from the Sparse class declaration

class Sparse {
protected:

static int dn; / /  dimension of node
static Real penalty; / /  penalty factor to impose constraints
static ErrorHandler eh; / /  error handler
int nc; / /  node count
SMstate s; / /  state of the linear system
friend class SVector;

public:
Sparse(int node_count, int node-dim =  Sparse::dn);
virtual "SparseQ { }
virtual int reset_node_count() =  0;
virtual int siie() =  0;
virtual int copy(Sparse& rp) =  0;
virtual int report_storage(ostream& os =  cout) =  0;
virtual int connection(IntVector& c) =  0;
virtual int optimise() =  0;
virtual int realise() =  0;
virtual int assemble(Matrix& subm, IntVector& c) =  0;
virtual int constraint(int n, RealVector& v, Real p=Sparse::penalty) =  0;
virtual int disable_node(int id) =  0;
virtual int disable_unknown(int id, IntVector& v) =  0;
virtual int decompose(Real tol =  (Real) 0.0001) =  0;
virtual int solve(RealVector& rh, RealVector& rs) =  0;
virtual Real determinant!) =  0;
virtual int deanQ =  0;
virtual int asaign(Sparse& rp) =  0;
virtual int plus_assign(Sparse& rp) =  0;
virtual int minua_assign(Sparse& rp) =  0;
virtual int multiply_rv(RealVector& rv, RealVector& rs) =  0;
virtual int multiply_lv(RealVector& lv, RealVectorfe rs) =  0;
virtual Real triple_product(RealVector& lv, RealVector& rv) =  0;
virtual int print(ostream& os =  cout) =  0;
virtual int read(istream& os =  cin) =  0;

Figure 12.3 A simplified version of the Sparse class declaration
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created: created, optimized, realized, assembled, and decomposed.

The Created State: When a Sparse object is created, sufficient memory is 

allocated for storing its properties except the memory for storing coefficients of 

the sparse matrix the Sparse object represents. A Sparse object is in a created 

state until it is realized. The connectivities between the nodes determine the 

non-zero coefficients of the coefficient matrix. These connectivities are specified 

to a Sparse object when it is placed in the created state.

The Optimized States: The optimized state is optional and indicates that the 

node numbering of a system represented by the Sparse object has been 

optimized.

The Realized State: The memory for non-zero coefficients including any

coefficients tha t are made non-zero during the matrix decomposition process is 

allocated when a Sparse object is realized. Sub-matrices can be assembled to the 

m atrix represented by a Sparse object only after the object is realized.

The Assembled State: A Sparse object is in an assembled state if at least one 

sub-matrix has been assembled to the m atrix th a t it represents. A Sparse object 

can be decomposed only when it  is in an assembled state.

The Decomposed State: A Sparse is in a decomposed state if the matrix it 

represents has been decomposed. A decomposed Sparse object is ready to be 

used for solving linear simultaneous equations and for calculating the 

determinant of the matrix.
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12.4.3 Properties of the Sparse Class

The interface defined by the Sparse class is based on nodes. A node 

contains q unknowns, where q is greater than or equal to 1. The declaration of 

the Sparse class contains member variables for representation of general sparse 

matrices. As shown in Figure 12.3, these variables include: the number of 

unknowns per-node "dn", and the number of nodes "nc", the penalty factor 

''penalty' used to impose constraints, the member object "eh" for exception- 

handling, and the state variable "s" which is of the enumeration type SMstate. 

The number of unknowns per-node is fixed for a particular application.

12.4.4 Classes Used with the Sparse Class

Several classes are used with the Sparse class and referred to in the Sparse 

class declaration. These classes are:

• Matrix: described in Chapter 11. The matrices from which a sparse matrix 

is assembled are represented as objects of the Matrix class.

• IntVector. defined by using the parameterized vector class, Vector(T), 

discussed in Chapter 10. This class represents vectors of integers and it 

serves as the class of the node connectivity arrays.

• SVeetor. a derived class of the RealVector class. This class serves the 

following purposes: (1) it creates RealVector objects of dimension equal to 

the total number of unknowns based on the number of nodes, (2) it 

assembles sub-vectors to a RealVector object, and (3) it retrieves sub­

vectors from a RealVector.

The type of sparse matrix elements is Real, can be either float or double, 

and is determined a t compilation time.
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12.4.5 Interface of the Sparse Classes

The function prototypes contained in the declaration of the Sparse class 

specify the standard interface for sparse matrix classes. The Sparse class 

implements only a few of these functions itself. These functions are mostly for 

retrieving and setting values of common member variables defined in the class. 

Most of these functions are pure virtual functions. A pure virtual function of a 

class is the one that must be implemented by each of its derived classes. The 

derived classes of Sparse implement the majority the interface.

12.4.5.1 Object Creation and Destruction

A Sparse object can be created statically by defining an object of a derived 

class or dynamically by using the operator new. When a Sparse object is 

created, the number of nodes and the number of unknowns per node (optional) 

are specified. The number of unknowns per node has a default value of two 

which can be reset through a member function of the S  Vector class. When a 

Sparse object is created, the number of unknowns per node of the SVector class 

is set to the same value as the Sparse class. Thus, in an application, one or 

more Sparse objects can be created. However, these objects must have the same 

number of unknowns per node.

12.4.5.2 Establishing the Nodal Connectivity and Realization

The connectivity between nodes in a system, which determines the storage 

of a Sparse object, is established by passing the nodal connectivity array to the 

Sparse object using the member function Derived::connectivity. Here, the name 

"Derived’ refers to the name of a derived class. Specifying the class name with 

the member function name attem pts to emphasize th a t this function is



www.manaraa.com

253

implemented by a derived class. A nodal connectivity array contains a set of 

node numbers. Listing two node numbers i and j in a connectivity array 

indicates tha t the sub-matrices (i, j), (j, i), (i, i) and (j, j) in the sparse matrix 

are non-zero.

A node or an unknown of a node can be disabled such that the node or 

unknown will not be included in storage of the linear simultaneous equations. A 

unknown also can be restricted such tha t the solution of the linear equation 

system for this unknown is zero or a specified value.

The order of the nodal numbering can be optimized to reduce the memory 

used to store the sparse matrix. This is done by using the method 

Derived:.-optimize. A  Sparse object is realized by using the member function 

Derived:.-realize. Memory for the sparse matrix is allocated when the object is 

realized.

12.4.5.3 Solving Linear Simultaneous Equations

The sparse matrix represented by a Sparse object is assembled by using 

the member function Derivedr.assemble. The m atrix is decomposed into the form 

LU for unsymmetrie matrices or L D L T for symmetric matrices by using the 

member function Derived:.-decompose. A  decomposed sparse matrix object is 

ready to be used for solving linear simultaneous equations by using the member 

function Derivedr.solve. Two RealVeetor objects are passed to this function. 

One holds the right-hand>side vector, and the other holds the solution vector. 

Invoking this function through a Sparse object th a t has not been decomposed 

will also cause the object to  be decomposed. The determinant of the sparse 

matrix is obtained by using the member function Derivedr.determinant.
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12.4.5.4 Other Operations for Sparse Objects

Other operations for sparse matrix manipulations include sparse matrix 

assignment, multiplication of a sparse matrix with a vector, and input/output of 

a sparse matrix. Because a Sparse object remembers its state, the member 

functions for multiplying the sparse matrix with a vector are performed 

correctly even after the matrix is decomposed.

12.5 Design of the ActiveColumn Class

The ActiveColumn class is derived from the abstract class Sparse. The 

ActiveColumn class implements the active column (skyline) storage scheme. A 

simplified version of the ActiveColumn class declaration is listed in Figure 12.4, 

where only some prototypes of member functions are listed for compactness. A 

complete listing of the declaration may be found in (Zhang et al., 1990a).

The coefficients in the upper triangle of a symmetric sparse matrix are 

stored in a two-dimensional array represented by a member variable a which is a 

pointer to pointers to the Real type. Each column of the skyline in the upper 

triangle of the m atrix is stored in a row of the array. Each row of the array 

may have different number of entries. Two profiles, pn  and pf, are used to record 

respectively the number of sub-matrices and the number of elements in each 

row. Both profiles are member objects of the IntVector class, pn is the profile 

in terms of the nodes, and p f  is the profile in terms of the unknowns.

The decomposed form of the sparse matrix, LD LT, is stored in the same 

storage as the undecomposed matrix. The elements of the diagonal matrix D are 

stored separately in an array represented by a pointer to the type Real. This 

pointer is the member variable d.

The ActiveColumn class implements the interface specified in the abstract 

class Sparse as described in the previous section.
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A n e x c e rp t from  th e  S p a rse  class d e c la ra tio n

class ActiveColumn : public Sparse { 
private:

int ec; / /  dimension of the matrix 
IntVector pn; / /  profile in terms of node
IntVector pf; / /  profile in terms of unknown
Real** a; / /  matrix coefficients
Real* d; / /  elements of the diagonal factor matrix D

public:
ActivcColumn(int count, int dim =  Sparse::dn) :

Sparse(count, dim), pn(count), pf(count*dim)
{ ec =  count * dim; s =  created; } 

”ActiveColumn() { if (is_realized()) free_memory(); } 
int connection(IntVector& c); 
int optimise(); 
int realiieQ;
int assemble(Matrix& subm, IntVector& c); 
int decompose(Real tol =  (Real) 0.0001); 
int 8olve(RealVector& rh, RealVector& rs);
Real determinantQ;

};

Figure 12.4 A simplified version of the ActiveColumn class declaration

12.6 Design of the SGraph Class

The graph-based scheme is an efficient direct-solution method for linear 

simultaneous equations (Shi, 1990). It has a node renumbering algorithm as one 

of its inherent components. This leads to one of its distinguishing features 

whose efficiency depends only slightly on the node numbering of a  system. This 

feature is significant for problems where it is difficult or computationally 

expensive to optimize the node numbering for the skyline scheme.

Although this method is not limited to systems with a symmetric sparse 

matrix, only the graph-based scheme for symmetric sparse matrices is 

implemented in the present work. A detailed description of the graph-based 

scheme can be found in (Shi, 1990). The basic ideas of the method are described
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briefly in Section 12.6.1. The major steps in the node renumbering algorithm  

are summarized in Section 12.6.2. The formulation of the matrix decomposition 

for a matrix with sub-matrices as its entries is listed in Section 12.6.3. Section

12.6.4 discusses the implementation of the method.

12.6.1 The Graph-Based Sparse Storage Scheme

Most existing sparse matrix schemes are compact methods in tha t their 

efficiency depends on the band-width of the sparse matrix. A number of efforts 

have been spent on optimization algorithms to reorder node numbers and 

minimize the band-width. The graph-based method reorders the node numbers 

to minimize the number of non-zero entries produced during the matrix 

decomposition. The resulting non-zero entries of the sparse matrix before and 

after decomposition may not be necessarily located close to the diagonal. 

Rather, they may be distributed over the entire matrix. These non-zero entries 

are recorded during the nodal renumbering. Memory is allocated only to store 

the non-zero entries. Because memory is also required to store information 

about the distribution of non-zero entries, this method is most efficient when the 

entries of a sparse m atrix are matrices instead of scalars.

Nodal connectivities or the topological relationships of a system correspond 

to a graph. Each node of the system is a  node in the graph. The connectivity 

between two nodes of the system corresponds to a line connecting the two 

corresponding nodes in the graph. The distribution of non-zero entries in a 

sparse matrix before decomposition is represented by a  graph. Eliminating a 

row in the Gaussian elimination process, or correspondingly decomposing a row 

in the matrix decomposition process, will erase the corresponding node from the 

graph. Eliminating a row in the Gaussian elimination process may generate new 

non-zero entries in the matrix. Erasing a node from the graph may also produce 

new lines according to certain rules to be discussed in the next section. Thus, a
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one-to-one correspondence can be established between the Gaussian elimination 

process (i.e., the matrix decomposition process) and a graph manipulation 

process.

In the implementation of the graph-based scheme, the graph is represented 

by a software object. The initial graph is constructed according to the nodal 

connectivities specified for a given system. The row elimination process is then 

simulated by operations on the graph along with a nodal renumbering process to 

reduce the number of non-zero entries produced. The results of such a 

simulation are a new nodal numbering and a graph based on the new node 

numbering. This graph records the distribution of non-zero entries including 

those non-zero entries produced in the sparse matrix during the matrix 

decomposition. The major steps of the simulation process will be discussed in 

the next section.

12.6.2 Determining New Nodal Numbering

The graph can be represented as a two-dimensional array referred to as G 

for description purpose. The array G initially has N rows representing an N- 

node graph. In the i’th  row of the array, the numbers of the nodes tha t connect 

to the i’th  node by a line in the graph are recorded. Thus, if two nodes 

numbered respectively as i and j are connected in the graph, the number i is 

recorded in the j ’th  row, and j  is recorded in the i’th row of the array G.

The simulation of the matrix decomposition process and the determination 

of the new node numbering is performed in the following two major steps.

1. Finding and Erasing the Least Connected Node: The node-renumbering 

process starts by searching the array G for the node having the least 

connections with other nodes. This node is chosen as the first node in the 

new node numbering. If the node is node i, the i’th  row and the i’th
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column of the sparse matrix are moved to the first row and the first 

column respectively. The new first row can then be eliminated or 

decomposed. This corresponds to the erasing of node i from the graph or 

the removal of the node number i from all rows of the array G.

2. Determining the Generated Line: If the i’th row of the array G is not 

empty, a new line is generated between any two nodes in the i’th row if 

the two nodes are not already connected in the graph. These new 

connectivities are then recorded in the array G. A generated connectivity 

between two nodes, say node j and node k, indicates tha t two non-zero 

entries, (j, k) and (k, j), are produced during the elimination of the node i. 

Finally, the i’th row of the array G is marked such that it will not be 

processed again.

The operations described above on the N-node graph result in a new graph 

having (N-l) nodes. The new graph is still represented by the array G. These 

operations are then repeated to operate on the new (N-l)-node graph. The 

second node under the new nodal numbering is then found, and a new (N-2)- 

node graph is produced. This process is repeated for (N-l) times. Also, a graph 

is produced during the process to represent the distribution of non-zero entries 

of the decomposed matrix associated with the new node numbering.

Memory is allocated for all lower triangle and diagonal non-zero entries of 

the sparse matrix according to the graph under the new nodal numbering. The 

sparse m atrix can then be assembled.

In general, the initial nodal numbering of a system affects slightly the 

number of non-zero sub-matrices to be stored. For some problems, a unique 

number of sub-matrices can be obtained independent of the nodal numbering. 

However, for other problems, different numbers of sub-matrices may be obtained 

from different initial nodal numberings for a given system. The differences are 

usually not significant.
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12.6.3 Formulation of Matrix Decomposition

The formulation for the decomposition of a matrix whose entries are sub­

matrices is the same as the formulation for common matrix decomposition. This 

formulation can be simply expressed as

A  =  L D L t

A  is a N by N symmetric matrix. The entries of A, Ajj,  are sub-matrices of 

dimension q by q where q is the number of unknowns per node. L is a lower- 

triangle unit matrix. Its entries, Ljj, are sub-matrices of dimension q by q, and 

its diagonal entries are unit matrices. The matrix D is a diagonal matrix, and 

each of its diagonal entries, Djj, is a q by q symmetric matrix. The formula for 

determining the matrices L and D are as below

L ijD ii = A ij — £  L ikD kkL jk 0  <  0  
k=l

and

i_1 TDji — A;, — Yj kjfcDicfcLjic
k—i

12.6.4 Implementation

This section discusses the issues involving the implementation of the 

graph-based scheme. This scheme is implemented in a class SGraph derived 

from the Sparse abstract class. The implementation of the SGraph class is based 

on the original C code written by Dr. Gen-Hua Shi. Several classes are 

internally defined and used by the SGraph class. These classes include: 

SubMatrix used for the representation of a  sub-matrix entry in the sparse 

matrix; IndexedMatrix used for an entry in the graph array G; and Node Table 

used for a row of the graph array G. These classes and the SGraph class are 

described below.
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12.6.4.1 Representation of Sub-Matrices

The SubM atrix  class is defined to represent a group of square matrices 

having the same dimension. Entries of a sparse matrix are matrices of this sort. 

The SubM atrix  class is derived from the M atrix  class described previously in 

Chapter 11. Member functions are defined for manipulating this specific matrix 

type.

12.6.4.2 Representation of Entries in the Graph Array

The IndexedM atrix  class is defined to represent entries of the graph array 

G. An entry of the array G contains a node number as well as a sub-matrix if 

the entry corresponds to a lower-triangle entry in the sparse matrix.

▼
A.

12.6.4.3 Representation of Rows in the Graph Array

The number of entries in a row of the graph array cannot be determined 

in advance, and the number may increase during the graph operation. Thus, a 

class NodtArray representing arrays of IndexedMatrix objects is defined first 

based on a parameterized array class. This parameterized array class is an older 

version of the ExtArray(T) class described in Chapter 10.

The NodeTable class is defined using the NodeArray class as a base class. 

Member functions are defined in the NodeTable class to insert an entry to a row 

of the graph array G, delete an entry from a row, lookup an entry from a row, 

and sort entries according node numbers etc. This class also contains a 

SubMatrix object storing the inverse of an entry sub-matrix of the matrix D. 

Thus, the entries of both the matrix D and its inverse D-1 are stored after a 

sparse m atrix is decomposed for efficiency. Moreover, when a sparse matrix is
TA
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decomposed, the sub-matrix Ljj (j <  i) is stored in the same storage as the sub­

matrix Ajj, and the sub-matrix Djj is stored in the same storage as Ajj. A  

simplified version of the NodeTable class declaration is shown in Figure 12.5.

12.6.4.4 Representation of the Graph

The graph array G is represented by the class SGraph. A simplified 

version of the SGraph class declaration, where only some of the member function 

prototypes are shown for conciseness, is listed in Figure 12.6. A complete listing 

is given in (Zhang et al., 1960a).

The SGraph class contains the following member variables:

• The number of effective nodes "nnc". An effective node is the one tha t 

connects with at least one other node and tha t is not disabled.

• The graph array "graph". It is an array of NodeTable objects, but declared 

as a variable of type void** to hide the internal classes such as NodeTable 

and IndexedMatrix from the application.

• A pointer to an IntVector object "pnew". This IntVector object stores the 

new node numbers with the old node numbers as indices.

• A pointer to an IntVeetor object "polet'. This IntVector object stores the 

old node numbers with the new node numbers as indices.

• A real variable "det" for the determinant of the sparse matrix. The 

determinant of a sparse matrix is calculated when the matrix is 

decomposed.

The SGraph class contains member functions implementing the interface 

specified in the abstract class Sparse described in Section 12.4.
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A n e x c e rp t fro m  th e  N o d eT ab le  c lass d e c la ra tio n

class NodeTable : private NodeArray {
static int init-size; / /  initial size of the NodeArray
static int size_incr; / /  size increment of the NodeArray
int ndc; / /  number of node in the table
int diagnl; / /  index of the diagonal sub-matrix
SubMatrix* pdi; / /  pointer to the inverse of the diagonal

public:
NodeTable(int d ) : (NodeTable::init_size, NodeTable::size_incr)

{ ndc =  1; elem(diagnl =  0).id — d; 
pdi =  (SubMatrix*) 0; }

NodeTable(NodeTable& x) { ndc =  x.ndc; diagnl =  x.diagnl;
pdi =  x.pdi; }

~NodeTable();
Node& operator [] (int i)

{ if  (i <  0 11 i > =  ndc) 
eh.error(ary_index,

"NodeTable index out of range"); 
return NodeArray::elem(i); }

Node& elem(int i) { return NodeArray::elem(i); }
int insert(int c); / /  insert a node before the diagonal
int append(int c); / /  append a node at the end
int move_forward(int c); / /  move a node behind diagonal to ahead
int move_backward(int c); / /  move a node ahead diagonal behind
int lookup(int c, Node& node); / /  lookup a node identified by id (c)
void allocateQ; / /  allocate the sub-matrices
void deallocate(); / /  deallocate the sub-matrices
void erase(int c); / /  delete a node from the table
void era8e(); / /  delete all nodes except the diagonal
void clean(); / /  zero all sub-matrices
void renumber (IntVector & t); / /  renumbering id for all nodes
void sort(); / /  sort such that id in increasing order
void report_connectivity(ostream& os =  cout);
void print(ostream& os =  cout);

};

Figure 12.5 A simplified version of the NodeTable class declaration
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«

A n e x c e rp t fro m  th e  S G ra p h  class d ec la ra tio n

class SGraph : public Sparse { 
private:

int nnc; / /  number of effective nodes
void** graph; / /  the graph
IntVector* pnew; / /  array of new node number with old as index
IntVector* pold; / /  array of old node number with new as index
Real det; / /  the determinant

public:
SGraph(int count, int dim =  Sparse::dn);
"SGraph();
int connection(IntVector& c); 
int optimiieQ; 
int realiieQ;
int assemble(Matrix& subm, IntVector& c); 
int decompose(Real tol =  (Real) 0.0001); 
int solve(ReaIVector& rh, RealVector& rs);
Real determinant();

Figure 12.6 A simplified version of the SGraph class declaration

12.7 Testing of Sparse Matrix Classes

A test program for the sparse matrix object classes is described in this 

section. A rectangular region is discretized into (m+1) x (n+1) nodes and n x m 

elements as shown in Figure 12.7. Each node is assumed to have 6 unknowns. 

This problem does not have any physical meaning and is only used for testing of 

sparse matrix classes. The order of node numbering is fixed as shown in the 

figure. The node numbers increase from left to right and from top to bottom. 

An excerpt of the testing program is shown in Figure 12.8. A complete listing of 

the program may be found in (Zhang et al., 1090a).

There are two functions in the test program, a void function m akt-m atrix  

and the main function. In the main function, the input data includes the
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Figure 12.7 The mesh of the testing case
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#include "actvcmCC.h" / /  include the ActiveColumn class declaration
#include "sgraphCC.h" / /  include the SGraph class declaration

Sparse* psp; / /  the pointer to the Sparse object
int elem_x, elem_y; / /  number of elements in the x-direction and in the y-direction 
int dim; / /  number of unknowns per node

void make_matrix()
{

This fu n c tio n  generates the sparse m a trix . I t  uses the fu n c tio n  
(*psp).connection  to establish the node connectiv ity , uses the 
fu n c tio n  (*psp).realize to realize the object, and  uses the 
fu n c tio n  (*psp).assem ble to assem ble the sparse m atrix .

}

main()
{

int nd-count; / /  number of nodes
int m_type; / /  type of sparse matrix to be used
cin »  elem_x »  elem_y »  dim »  m_type; / /  input parameters

SVector::set_dn(dim); / /  set the number of unknowns per node 
nd-count =  (elem_x +  1) * (elem_y +  1); 
if  (0 = =  m_type)

psp =  new ActiveColumn(nd-count); / /  create an ActiveColumn objet
else

psp =  new SGraph(nd-count); / /  create a SGraph objet 
make_matrix(); / /  generate the sparse matrix
(*psp).decompose(); / /  decompose the sparse matrix
SVector vl(nd_count), s i  (nd-count), s2(nd_count);
for (int i =  0; i <  nd_count*dim; + + i)  / /  generate right-hand-side vector

v l( i)  =  double(i) +  1.0;
(*psp).solve(vl, s i); / /  solve simultaneous equations
sl.printQ; / / print the solution

}

Figure 12.8 An excerpt of the testing program for Sparse classes
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number of elements in the x- and y-direction, the number of unknowns per 

node, and a flag indicating the storage scheme to be used. A sparse matrix 

object is created based on the input data. The function make-matrix is then 

called to establish the nodal connectivities of the sparse object, to realize, and to 

assemble the sparse object. The stiffness matrix for each element is generated 

artificially.

After the sparse matrix object is assembled, it is then decomposed and 

used to solve a set of linear simultaneous equations. The advantage of the 

standard interface feature of sparse classes is demonstrated in this testing 

program. In the function make-matrix, the sparse matrix object is manipulated 

without knowning the actual class of the object. In the main function, the 

actual class of the sparse matrix is checked only in the statement where the 

sparse matrix object is created.

A comparison of the efficiency of different sparse matrix classes has been 

performed on a Sun 3/60 workstation. The intent here is to provide only a 

rough estimate of the efficiency of the ActiveColumn and SGraph classes, rather 

than to make a comprehensive comparison between these two schemes. For a 

given number of nodes n x m =  480, six cases are computed for different 

combinations of n and m. Table 12.1 shows the storage and CPU times used by 

the two sparse classes for the six cases.

The six cases are listed in the table in the order of increasing band-width 

of the sparse matrix. The efficiency of the ActiveColumn class is greater for the 

smaller band-widths as expected. Conversely, the efficiency of the SGraph class 

shows little dependence on the nodal numbering. The memory and CPU time 

used in the case of n =  40 and m =  12 is very close to those used in the case of 

n =  12 and m =  40. In fact, these two cases correspond to the same mesh but 

with different orders of nodal numbering. However, the memory and CPU time 

used for the two cases n =  20, m =  24, and n =  24, m =  20 shows a  clear
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Table 12.1 Comparison of efficiencies of Sparse classes

n m Nodes Unknowns

ActiveColumn SGraph

Storage used CPU (sec) Storage used CPU (sec)

40 12 533 3198 759303 1036 313632 356

30 16 527 3162 586125 629 335340 423

24 20 525 3150 482319 432 328140 400

20 24 525 3150 413199 323 347724 469

16 30 527 3162 344205 228 343728 455

12 40 533 3198 275463 151 310212 347

Notes: The storage used is estimated in unit of double precision numbers.

difference, even though these two cases also correspond to the same mesh.

It can also be noted from the table tha t for the cases where a lower band­

width can be easily achieved by numbering the nodes properly, the 

ActiveColumn class is faster and uses less memory than the SGraph class. 

However, for cases where an optimum band-width can not be easily achieved, 

the SGraph class may be more efficient.

The code for the active column scheme can be optimized more easily than 

the graph-based scheme. The current implementation of the SGraph class uses 

the Matrix class to represent its sub-matrices. For problems having a lower 

number of unknowns per node such as the plane stress/strain finite element 

analysis, special matrix classes should be developed and used to represent sub­

matrices for the SGraph class and to optimize the performance of the method. 

Moreover, the current implementation of the node renumbering strategy 

described in Section 12.6.2 may be improved to reduce further the node 

numbering dependence of the SGraph class.
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CHAPTER 13 DATABASE MANAGEMENT SYSTEM REQUIREMENTS

This chapter gives a brief review on the current technology of Database 

Management Systems (DBMSs) and discusses an approach to integrating a 

commercial DBMS with the SESDE. The organization of this chapter is as 

follows. The importance of a database management system for computational 

software is introduced in Section 13.1. The basic requirements for a general 

database management system are described in Section 13.2. The older 

generations of database management technology including flat-file management, 

hierarchical and network database management, and relational database 

management, as well as the problems associated with these older technologies 

are described in Sections 13.3. The state-of-the-art of object-oriented database 

management is discussed in Section 13.4. The characteristics of engineering 

data and engineering computation environments are discussed in Section 13.5, 

and a brief overview of the state-of-the-art of engineering database management 

is given in Section 13.6. Finally, Section 13.7 discusses issues associated with the 

integration a commercial DBMS with the SESDE.

13.1 The Need for Database Management Systems

The purpose of database management systems is to maintain databases 

stored in the permanent or secondary storage (disks) of a computer system, and 

to transfer data from user to the program, or between code units in the 

program, or between different programs. A database is a collection of logically 

related persistent data th a t are produced, utilized, and shared by one or more 

programs. Persistent data are those th a t have a longer life than the programs
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th a t produce and manipulate them. Figure 13.1 shows the basic relationship 

among an application, a database, and the database management system.

Application

Database
Management

System Database

Figure 13.1 Basic relationship: an application with a database

Database management technology has been well developed and utilized in 

business data processing such as marketing and banking. Also, the importance 

of this technology for engineering applications in supporting data-intensive 

engineering applications software and integrated engineering software systems 

has been well recognized in recent years.

Engineering applications software often requires manipulation of a large 

amount of d a ta  for certain engineering tasks. Computer-Aided-Design (CAD) 

software is a typical example of this sort. A typical application needs to obtain 

input data either interactively or from databases in the computer file system. It 

m ust also perform validation checking of the input data to ensure the 

correctness of the computations. The code th a t handles the data input and 

validation checking is the most cumbersome and error-prone part in many 

programs.

Furthermore, in most modern applications, the input process is 

substantially compressed by the use of sophisticated user-interfaces and 

computer graphics. The resulting input data is then greatly expanded prior to 

or during the performance of the engineering tasks. The program also needs to
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store the processing results in databases for further processing, which, in turn, 

become the input data of either the same program in the next execution or other 

programs which are integrated with this program.

Modern engineering software systems often integrate several programs due 

to the complex nature of engineering activities. These programs share common 

databases. A set of programs for structural design, analysis, and drafting is a 

typical example of integrated software systems. A database management system 

is a  critical component for such a system in facilitating the communications and 

enforcing data consistency between these programs. Figure 13.2 shows a typical 

configuration of an integrated engineering software system.

j Application 1 | | Application 2 Application n

Database
Management

System

Databases

Figure 13.2 Typical configuration of an integrated system

Moreover, an object-oriented program also tends to be decentralized in 

th a t the program consists of a  set of object classes and/or object sub-systems. 

The communication between objects and object sub-systems is accomplished by 

objects sending messages to each other. In order to do so, a message sender 

object must know the message receiver object. An example of this is th a t in a 

finite element analysis program, an element object must know the global
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stiffness matrix object in order to assemble its element stiffness m atrix to the 

global matrix. To prompt the independency between these classes and sub­

systems and the flexibility for modification and extensibility, the use of objects 

with global scope is discouraged. Thus, a database management system is also 

critical to transfer objects, either in the primary memory or in the secondary 

memory, between code units upon requests in such programs during the 

program execution.

In the absence of a formal database management system, a traditional 

application program owns its own set of files for storing persistent data, and 

each of these files has its own logical and physical structure. Persistent data, 

which are usually of a  basic data type supported by programming languages 

such as integer, real, and text strings, are grouped into records, and each data 

item in a record is referred to as a field of the record. Records are stored in 

database files in a certain order. The logical structure of a database refers to 

the type, format and sequence of data fields packed in records as well as the 

relationships between these records. The physical structure refers to the 

physical sequence of the records in database files. If programs and the stored 

data  depend heavily on each other, both programs and databases will be difficult 

to change.

When different programs in an integrated system need to access the same 

data, either a strict agreement has to  be made among these programs about the 

logical and physical structure of the shared database files, or the shared data are 

stored in different database files according to the needs of each individual 

program. The second approach results in the shared persistent da ta  being 

stored redundantly and causes difficulty in keeping the data  consistency among 

different programs in an integrated system. Also, each program has to perform 

its own persistent da ta  validation and manipulation resulting in duplication of 

code across these programs. Since programs heavily depend on each other, a 

modification of a single program could have a profound and unexpected effect on



www.manaraa.com

many other programs. This results in difficulties in the extension of a system.

The problem with traditional data management via flat files is tha t the 

databases are mainly defined or viewed as the properties of each individual 

program, rather than independent and shared resources. To make databases 

shared and better managed, the most important principle tha t should be 

followed is data-independence. T hat is, a database should stand on its own and 

not depend on any particular application. To this end, DBMSs are needed to 

stand between applications software and their supporting databases and connect 

applications with databases.

DBMSs provide a uniform view on the data stored in databases and data 

access for applications according to the view to facilitate data-independence. 

W ith the assistance of a proper DBMS, applications need only care about which 

persistent data to be stored or retrieved rather than how to store and retrieve. 

Thus, database management technology has the capability to improve the 

flexibility for modification, extensibility, and standardization of applications 

software to a large extent.

During the last 25 years, database management technology has evolved 

through three full generations: flat-file management systems, hierarchical and 

network database management systems, and relational database management 

systems. It is now entering the fourth generation with object-oriented 

technology (Loomis, 1900). However, it is interesting to note th a t the successive 

generations have not completely replaced their predecessors. Rather, the older 

technology continues to exist along with the new methods. This is particular 

true in engineering application areas.

Each generation of database management technology has its own distinct 

da ta  model. A data model is a style of describing and manipulating data  in a 

database. Data models differ in the style in which data  objects and relationships 

between data objects are described. They also differ in the manner in which
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constraints on data objects and operations upon the database are expressed. 

Data models are used to describe schemas, which in turn describe specific 

collections of data in the database.

13.2 Basic Requirements

A common set of basic requirements for general database management 

systems is listed below.

a. Provision of Data Persistence. This is the major role of a DBMS. A 

database exists outside the scope of any particular program run-unit. The 

data are stored in non-volatile storage and continue to exist even after the 

execution of the program that created them has terminated.

b. Provision of Program-Data Independence. Program-data independence 

means th a t the physical placement and formating of data, and the 

technique used to access the data in the database are hidden from 

applications which utilize the database. A database management system is 

said to provide program-data independence if it does not require 

modification of applications when a database is changed in its logical or 

physical structures. Several levels of data independence can be achieved 

by a DBMS. These levels may classified based on the following changes 

required in the application when an associated database is changed:

• modification of statements,

• recompilation,

• relinking,

r

• nothing required.

An execution cost is associated with data independence. W ith computer 

processing cost decreasing and software maintenance cost increasing, data
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independence provides cost savings by reducing costly program 

maintenance and extension at a small cost in execution performance.

Support of Data Semantics. A DBMS should understand and handle 

certain data semantics. Semantics can be described in terms of what can 

and cannot be done with the data. The DBMS should have the capability 

to perform data validation checking. An application should describe what 

to be retrieved and stored according to the data model, and the DBMS 

should determine how the data can be accessed efficiently in the database.

Provision of multiple views on the same set of data. A view is the 

capability to limit the visibility of data objects. A database may be 

viewed differently by different applications, and each view represents a 

certain aspect of the database. The underlying concept is information 

hiding. Views give applications selective access to a database such that 

only the data  necessary for an application is accessed by the application. 

Views also support data-independence by providing a stable interface to 

the database even though the logical structure of the database might 

change. A view can be defined by hiding named fields in the logical 

structure of the database or by defining new fields which are not stored 

explicitly, bu t rather are derived or computed from stored hidden fields.

Prim ary storage management. A DBMS should provide efficient ways to 

transfer data  objects either in primary or secondary memory between code 

units upon requests. This is to prompt software flexibility, extensibility 

and standardization.

Secondary storage management. A DBMS should provide efficient ways to 

represent and access both large-scale data objects and large collections of 

small data  objects.
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g. Concurrency. This is a fundamental capability to a DBMS to support 

sharing of a single database.

h. Recovery. This feature enables the DBMS to cope with system failures 

and to protect database contents from destruction. Failures can come 

from the processor, the network, the system software, the application 

software, and hardware.

i. Ad hoc query facility. This enables users to access database contents 

without writing a program.

13.3 Older Database Management Technologies

This section describes first three older generations of database 

management technologies including file management, hierarchical and network 

database management, and relational database management technologies. 

Problems associated with these older technologies for engineering software are 

then discussed.

13.3.1 File Management Systems

File systems are the first generation database management system. At 

present, file systems are still commonly used in many engineering applications. 

The data model of a file system is called the file data model. Persistent data are 

described by declarations in the source language by listing the names of the 

fields of data in each record of a file. The declarations also describe the type 

and length of each field. Application programs use program language features 

(READ, W RITE , etc.) to interact with the operating system’s file system to 

transfer data from the file to the work space and from the work space to the file, 

respectively. The access to records in a database file can be specified as either
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sequential or direct to achieve access efficiency.

Application programmers are responsible for describing the format and 

sequence of data records in the database files. File systems meet only two of the 

requirements for a DBMS discussed in the preceding section: data persistence 

and secondary storage management. File systems are usually very efficient. 

Their possible problems have already been discussed in Section 13.1.

13.3.2 Hierarchical and Network Database Management Systems

Hierarchical and Network DBMSs are the second generation of DBMSs. 

They were developed in response to the basic need to have data storage that 

could be shared by multiple programs. The data models of these two types of 

DBMSs are the hierarchical data model and network data model respectively.

In the hierarchical data model, records of data are arranged in a hierarchy 

or tree structure according to parent-child relationships between records. A 

parent record may have many children records of various types, but a child 

record has exactly one parent record. The network data model removes this 

restriction in tha t records of data are arranged in a network of relationships and 

each record can have multiple parents.

These two types DBMSs commonly meet four of the basic requirements for 

a DBMS: data  persistence, secondary storage management, concurrency control, 

and recovery. They also provide a limited data-independence in that 

programmers do not have to know the physical structures to access data records. 

Thus, they enable data sharing between different programs. These systems are 

characterized by: (1) having their own data definition and manipulation 

language; and (2) supporting multiple types of records interrelated in rigid 

structures. They can be quite efficient for the data access th a t they are designed 

to support.
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These two types of DBMSs require that the application programs 

understand how the data records are logically organized in either a hierarchical 

tree or a network. Thus, if the logical data record organization is changed, the 

program referencing the data must also be changed. Moreover, the logical 

organizations of records in these systems are relatively hard to change and the 

development of new applications with an existing DBMS can be a time- 

consuming task.

13.3.3 Relational Database Management Systems

Relational database management systems (RDBMS) are the third 

generation of DBMSs. The im portant original objectives of the relational data 

model are simplicity, data independence, and rigor as described below.

a. Simplicity. An RDBMS views data as if they were formatted into tables, 

which are called relations. A data record, also called a tuple, occupies a 

row in a table. The columns of the table represent the common properties 

of each record, also referred to as the table’s fields or domains. A row in a 

table is identified by a primary key, which may comprise the values in one 

or more columns. A row’s primary key value is by definition unique 

within the table. In many cases, it is quite natural to view information in 

terms of tables. Connections between tables are formed by columns with 

the same name of comparable values.

b. D ata independence. The programmer or end-user views and accesses the 

data as it is stored in tables while the underlying storage structure of a 

RDBMS may be some other data structure.

c. RDBMS is based on set theory and relational calculus, even though this 

theoretical foundation may not be im portant in the actual implementation 

of RDBMSs.
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Relational database management systems meet all these requirements for a 

DBMS. RDBMSs are very convenient for applications primarily to produce 

reports, such as marketing and banking applications. Typical relational 

database systems are DB2 developed by IBM, Ingres developed a t University of 

California at Berkeley, and DBase developed by Microsoft. Relational DBMS 

have become very popular since the middle of 1980s (Loomis, 1990).

RDBMSs are characterized by a language interface called SQL which is 

used to define table structures and to access and update tables. SQL is the 

universal way to express retrievals, insertions, deletions, and updates in 

relational databases. SQL is a closed language in th a t it operates on tables and 

produces tables. SQL is typically supported in two modes: interactive and 

embedded in another language. The interactive mode stands alone in th a t no 

programming other than in SQL is required to access a relational database.

A typical RDBMS application is written using a combination of the SQL 

and a programming language such as C and FORTRAN. Any SQL statement 

tha t can be entered interactively can be alternatively embedded in a  program. 

A special command translator called host language preprocessor is necessary. 

The preprocessor extracts the database manipulation commands written in SQL 

from the program and replaces them with calls to the run-time support unit of 

the database management system.

The design of a relational database is a process of determining first what 

tables are needed to represent application objects, and then optimizing those 

table structures by using the so-called "normalization" technique for efficient 

performance. This technique minimizes the duplications of data across tables 

and commonly results in several tables being required to represent a  single 

application object. This normalization results in a weakness of RDBMSs for 

manipulation of complex objects. To manipulate complex objects, a  RDBMS 

must join many tables. This is a time consuming RDBMS operation.

c
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Another weakness of RDBMSs is the embedding of SQL in another 

language, and tha t SQL is table-oriented while other languages are typically 

record-oriented. This causes an impedance mismatch. This aspect will be 

discussed further in the next section.

13.3.4 Problems with Older Generations of DBMSs

As discussed previously, flat-file management systems and hierarchical and 

network DBMSs meet partially the basic requirements, while the relational 

technology meets all the basic requirements for a DBMS. However, these older 

technologies have two common serious weaknesses: (1) a large semantic gap 

with applications dealing with complex data, and (2) an impedance mismatch 

between the data-manipulation language utilized by DBMSs and general-purpose 

programming languages.

r
4 .

13.3.4.1 Semantic Gap

One of the measures of a DBMS’s quality is how easily the system can be 

used to model real world entities into a collection of data to be handled by the 

system. The "distance" between the data models supported by the system and 

real world entities manipulated by applications software is referred to as the 

"semantic gap". The older DBMSs lack sophisticated data types. Only primary 

data types such as integer, real, and text string are supported. This is adequate 

for classical business applications in which the data used is for the most part 

very simple. Thus, the relational database systems are quite satisfactory for 

such applications.

However, many engineering applications deal with very complicated real 

world entities. The data structures representing these entities may contain fields



www.manaraa.com

which are also data structures or references to other data structures. With the 

older technologies such as relational DBMS, these complicated entities have to 

be artificially fit into the relational tables. This leads not only to difficulties in 

the integration of an application with a DBMS, but also lower performance in 

data access.

13.3.4.2 Impedance Mismatch

In developing database applications with older DBMSs, two languages are 

usually needed: a data-manipulation language, with the SQL of relational 

database systems as a typical example, and a general-purpose programming 

language in which a large portion of the application is written. This is because 

the SQL lacks the completeness to express the non-data-manipulation part of 

the application, and the general-purpose language has persistent data only in the 

form of files. Information must be passed between the two languages tha t are 

semantically and structurally different. This impedance mismatch is reflected in 

two aspects:

1. The difference in programming paradigms. SQL deals with a-table-at-a- 

time, while a common programming language usually deals with a-record- 

at-a-time. A loss of information may occur a t the interface since the 

common programming language is often unable to  represent relations (i.e., 

the database structures of SQL) directly.

2. The difference in type systems. Since there are two systems of data types, 

there is no automatic way to type check the application as a whole.

The impedance mismatch affects directly the software productivity. W ith 

a RDBMS, the typical software development process is divided into the following 

separated and disjoint activities: analysis and design, implementation in a 

certain programming language, and database definition and access in another
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language SQL. Entities in the application domain must be translated first to the 

conceptual space of the implementation programming language and then 

translated to the conceptual space of the database management system.

W ith object-oriented DBMS, these two problems will be solved.

13.4 Object-Oriented Database Management Systems

13.4.1 The Motivation

Object-oriented database management systems (ODBMSs) are the fourth 

generation of DBMSs. Object-oriented database management technology is the 

natural result of the union of two technologies: object-oriented programming 

and database management. The motivation for the development of ODBMS 

comes from the demand in support of data-intensive engineering' applications 

such as Computer-Aided Design (CAD), Computer-Aided-Manufacturing 

(CAM), Computer-Aided-Engineering (CAE), and Computer-Aided-Software- 

Engineering (CASE).

These applications tend to center on high-performance graphic 

workstations and computation environments th a t support engineering activities. 

Such applications require massive amounts of persistent data. The level of 

complexity of these programs and of their data  has grown far beyond what 

traditional database systems are prepared to handle. Commercial OBDMSs 

begin to appear in the m arket, and the current (1990) prim ary ODBMS vendors 

in the United States are Object Design, OBJECT-Science, Objectivity, 

Ontologic, and Servio Logic (Thomas, 1990).

The data model of ODBMS more closely matches real-world entities. The 

basic idea of ODBMS is to represent an entity in the real world being modeled 

with a corresponding item in the database. This modeling includes not only the 

data structures (referred to  as properties) of objects, but also the operations
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performed on the objects (referred to as the behavior of objects). Objects can be 

stored and manipulated directly, and there is no need to transform application 

objects into tables. Data types can be defined by users, rather than being 

constrained to some pre-defined types. This factor shortens greatly the semantic 

gap between the DBMS and applications having complex data, without 

sacrificing the performance efficiency. This is one of the major goals of ODBMS.

Another important goal of ODBMS is to provide database management 

support to object-oriented programming. An ODBMS is typically implemented 

in an object-oriented language and supports applications written in the same 

language (However, some ODBMSs support also other object-oriented languages 

and traditional procedural languages as well). Thus, the ODBMS can be 

integrated seamlessly with the object-oriented programming language and the 

programmer only deals with a single uniform model of objects. This results in a 

no-vault software engineering process and leads to a single, unified conceptual 

model used in all phases of development and maintenance. This avoids the 

impedance mismatch that frequently occurs in the older DBMSs and thus 

improves software productivity, quality, and flexibility.

ODBMSs are first and foremost database management systems. They have 

the capability to meet the basic requirements of modern database management 

systems. Other features distinguishing ODBMSs from older systems will be 

discussed in the next sub-section.

13.4.2 Distinguishing Features

The distinguishing features of ODBMSs center on the idea of supporting 

object-oriented programming. They support the object-oriented programming 

notations of object classes, encapsulation, complex objects built by aggregations 

and inheritance, and polymorphism. ODBMSs enable objects to live outside the 

boundary of particular programs. Thus, ODBMSs are fundamental to the
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viability of object-oriented development of many software systems and offers the 

potential to extend object-oriented programming to a broader scope than is 

impossible with object-oriented languages alone.

13.4.2.1 Modeling Capability

An ODBMS allows any real-world entity to be uniformly modeled as an 

object, not as multiple tuples spread among several tables. An object belongs to 

a class or a data type. An ODBMS supports the definition of new object classes 

or new data types, rather than constraining programmers to use a fixed set of 

predefined types. New classes are indistinguishable from system-supplied classes 

for application programming: operations to objects of new classes are 

syntactically similar to and as efficient as the built-in operations on predefined 

classes.

An object class describes two aspects of objects: data structures and 

behavior. The data structure of an object contains the properties of the object. 

The value of an instance variable in a data structure can be of atomic types 

(integer, real, string etc.) and can be also an object. Thus, an ODBMS supports 

the definition of complex objects which are built up from aggregations of sub­

objects. Behavior denotes the semantics of objects of the class. Operations 

performed on objects of the class may be defined to describe the semantics of 

objects, as well as extensive integrity constraints, domain constraints, and 

exceptions. Thus, with a DBMS, constraints on objects can be more easily and 

precisely specified. Also, the code which defines the operations on objects of the 

class and is previously in applications may be included in the database. This 

prompts reuse and sharing of the objects’ semantics embedded in the code.

An ODBMS allows the data structures and behavior of objects to be 

encapsulated, since they can only be accessed or invoked from outside of the
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object through message passing.

An ODBMS also allows classes to be organized in a class hierarchy by 

inheritance mechanisms to express multi-levels of abstraction. A class inherits 

all the properties and methods from its direct and indirect ancestors on the class 

hierarchy.

13.4.2.2 Object Identifier

RDBMSs are value-based in tha t the identifier, called the primary key, of 

a row in a RDBMS is based on value of field(s) in the row. When the value of a 

primary key field changes, the row becomes a different row. If a row is used to 

model an object, changing the value of a primary key field would not keep the 

row affiliated with that object.

ODBMSs are identifier-based in th a t the object identifiers are independent 

of the particular values of instance variables in the objects. Also, an object’s 

identifier is different from and independent of the programming language 

symbol used to refer to the object. The identifier is the property of an object 

tha t distinguishes it from other objects and remains invariant across all possible 

modifications of its instance variables.

13.4.2.3 Transparent Database Transaction

Some ODBMSs are tightly integrated with object-oriented languages and 

have the capability for both prim ary and secondary memory management. 

Objects can be stored and retrieved automatically by such systems. The 

location of objects and the movement of objects between primary memory and 

secondary memory are transparent to the application programmer. Thus, with
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such systems, there is no boundary between objects in primary memory and 

those in persistent store. Persistent objects and transient objects can be treated 

equally. Such systems offer a further reduction in application development 

efforts.

13.4.3 Implementation Approaches

At the present, there are three major approaches to the development of 

object-oriented database management systems: RDBMSs with object interfaces, 

linkable ODBMSs, and systems which add persistence to object-oriented 

languages (Thomas, 1090).

13.4.3.1 RDBMSs with Object Interfaces

These systems are extensions of relational database systems to support 

object management. They provide object-oriented interfaces such tha t 

applications can communicate with them in terms of objects. These systems are 

used as a storage services for object-oriented systems and, internally, they do 

not have object-oriented features. Objects in such systems are still stored only 

as data without the associated methods and the objects are actually mapped to 

and from relational data types. This approach is a step forward but does not 

solve many of the problems of RDBMSs since data modeling capability is still 

limited and somewhat unnature (Thomas, 1980).

Postgres, a research project at the University of California at Berkeley, is 

a typical example of this type. Postgres is developed based on the RDBMS 

Ingres, and it extends the relational data model with an abstract data typing 

mechanism and identifies procedures as a fundamental data type. Support for 

abstract data types means the users are allowed to define a new data type, use
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that type to define a column in a relation, and define procedures which are 

usable in relational queries that manipulate the new data type. It makes some 

provisions for objects, but does so through storing its SQL and C procedures as 

attribute values in tables.

13.4.3.2 Application Linkable ODBMSs

Application linkable DBMSs are at the mainstream at present in the 

development of ODBMSs. These systems provide shared storage for objects and 

may be used with either object-oriented or traditional procedural languages. 

Applications are built on top of the ODBMSs, and they use the facilities 

provided by the ODBMSs through interface functions and other ODBMS specific 

mechanisms.

Gemstone by Servio Logic (Maier et al., 1986, 1987) is the first ODBMS of 

this sort. Gemstone is a Smalltalk based system and provides an extension of 

Smalltalk, called OPAL and used for data definition, data manipulation and 

general computation. Gemstone consists of an object-server and a workstation 

interface. The interface supports either C or Smalltalk applications running on 

Sun or PC-based workstations.

ONTOS (Ontologic Inc., 1990) provides a complete C ++  based 

development environment for object-oriented applications. A t the center of the 

environment is the ONTOS Object Database supporting the storage of many 

different types of data. ONTOS provides a transparent interface to C + +  

applications. A class named Object is defined in the ONTOS class library and 

used as the base for all persistent classes. The Object class defines a set of 

methods to create and destroy persistent objects. Each persistent object created 

has a unique identifier within an ONTOS database. During the execution of an 

application, persistent objects are automatically loaded from databases to
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virtual memory when the objects are needed. ONTOS also provides a set of 

tools including schema design tools and graphical user interface tools for the 

development of applications. The schema loader of the ONTOS’ environment 

operates on an application’s C ++  class definitions directly and generates 

schemas for persistent classes. Thus, no data definition and data manipulation 

language (DDL and DML) preprocessors are needed.

ObjectStore (Object Design Inc., 1990) has just appeared on commercial 

m arket in 1990. ObjectStore is based on the AT&T’s C ++ specification and has 

three principal components: the runtime unit, C and C ++  application library 

interfaces, and C ++  development tools. ObjectStore provides a complete 

distributed DBMS services by its runtime unit. It adds several additional 

instructions to the syntax of C ++  including the persistent instruction to declare 

persistent storage class, and the transaction instruction to retrieve objects from 

the persistent store. These additional instructions will be processed by a DML 

preprocessor compatible with Cfront of the AT&T C ++ compiler. The DML 

preprocessor also supports parameterized types th a t strengthen the AT&T C++. 

ObjectStore provides an OQL (object-oriented query language) for applications 

to retrieve objects in an object-oriented fashion. It uses a Virtual Memory 

Mapping Architecture and allows persistent objects to be handled in the same 

way as transient objects in programming and, therefore, provides a certain 

degree of transaction transparency. The developers of ObjectStore claim that 

ObjectStore has the capability to reduce application development efforts to a 

great degree.

13.4.3.3 Adding Object Persistency to Object-Oriented Languages

Adding object persistency to object-oriented languages seems to be the 

best approach for maintaining long lived objects. Such languages should be 

computationally complete in th a t all the computation required in an application
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can be written in the language, and persistence should be simply another 

characteristic of an object. Transparent database transaction should be 

supported. Thus, such languages will provide a truly seamless approach in the 

integration of the object-oriented paradigm with database management and 

avoid impedance mismatches since there is a single object model for everything 

in the system. This is still an area of research in object-oriented language. 

ObServer, Persistent Smalltalk, Mneme, and Sticky are examples of current 

research (Thomas, 1990).

It is worth mentioning tha t in the language Eiffel (Meyer, 1988), object 

persistency is offered by using a library class STO RABLE  with methods store 

and retrieve. If a class is a descendant of STORABLE, and if fn is a file name, 

an object of the class can be stored by the instruction x.store(fn), and retrieved 

by x.retrieve(fn). The entire object structure referred to by x, directly or 

indirectly, will be stored or retrieved. The external representation preserves the 

references. By choosing the right x, an entire object structure or part of it can 

be stored or retrieved. Persistent objects can be shared, however, the classes 

which store and retrieve the objects have to be the same.

13.4.4 Limitations of Current ODBMSs

At present, object-oriented database management technology is still in its 

infancy and continuously evolving. It is hard to evaluate the current 

commercially available systems without studying the complete documentation 

which can only be obtained with the purchase of these systems. W ith limited 

literatures available, several limitations of these systems are summarized in this 

section.
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13.4.4.1 Multiple Viewing of Persistent Objects

Data-independence is one of the primary goals of database management 

systems. ODBMSs are attaining the goal in terms of objects: persistent objects 

of a certain class can be shared by applications declaring the same object class. 

In engineering data management, all the information about an entity should be 

ideally defined and stored as one object for the sake of consistency. However, 

each of the applications sharing this information may see this entity from a 

different perspective and access only to a portion of this information. Thus, for 

the same set of information, there may be many different object representations: 

one for the complete information stored in a  database, and others for different 

perspectives of each individual application. In other words, a persistent object 

may have multiple views, and each view results in a particular object definition.

An ideal ODBMS for engineering software systems should have the 

capability to handle the view transformation between databases and 

applications. The following types of view transformations should be supported:

1. A view can be defined according to the inheritance hierarchy of object 

classes: an object of class B  should be able to be retrieved as an object of 

class A, where class A is a base class of class B.

2. A view can be defined by hiding named fields of an objects and these 

hidden fields may be distributed over levels of inheritance hierarchy.

3. A view can contain new fields derived (computed) from the hidden fields of 

an object.

This capability, however, has not been well addressed and supported by 

the ODBMSs currently available on commercial market. The storage of objects 

on disk depends upon a fixed representation of the objects. Thus, if the class 

definition of objects changes (i.e., if instance variables are added or deleted), the 

systems are not able to load the old objects without using programs to convert
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the objects. For the same reason, multiple views on the same objects is not 

supported by these systems.

13.4.4.2 Provision of In-Core Object Management

To be able to communicate to each other, code units in an application, 

object classes or object sub-systems, have to know the objects they need to 

communicate with. As discussed previously, to prompt software flexibility, 

extensibility and standardization, the use of objects with global scope is 

generally prohibited. A code unit should be able to inquire an ODBMS to 

obtain the object defined elsewhere to which the code unit need to communicate 

with. The code unit should be able to do so as long as the object exists 

regardless whether this object is in the primary memory (in-core) or in the 

secondary memory.

Moreover, some ODBMSs support transparent database transaction that 

objects can be stored and retrieved automatically. This is convenient for many 

applications because programmers are relieved from performing object 

transaction explicitly. However, for applications which deal with large objects 

or large number of objects, the programmers should be able to control the 

object transaction to improve the performance of such applications. This is 

because the programmers know better than the ODBMS which objects should be 

kept in the primary memory and which objects should be purged from the 

primary memory during the execution of applications. Thus, facilities should be 

provided by an ideal ODBMS such that a mixed control on object transaction 

may be accomplished. The programmers may take the advantages of the 

transparent object transaction provided by the ODBMS for some objects and 

may also perform the transaction explicitly for other objects in applications.
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The facilities mentioned above, however, have not been well addressed and 

supported by the ODBMSs currently on the commercial market, as seen from 

the available literature of these systems.

13.5 Engineering Data

Engineering is a multi-disciplinary activity. For example, in building 

construction, several activities are involved including finance planning, 

conceptual planning, design, analysis, and construction management. These 

activities cover accounting, architecture, structural, mechanical, electrical, and 

foundation engineering, and construction engineering. To autom ate these 

activities utilizing the computing power provided by modern computer 

technology, an integrated system consisting of a number of applications is 

necessary. These applications share a common set of information stored in a 

central database, as illustrated in Fig. 13.2, and generate a huge am ount of new 

information required to store in databases. Engineering data here refers to these 

information.

Differing from business data, engineering data has the following features:

1. Complexity: engineering data often can not be represented in tables due 

to the complicated inter-relationships between different kinds of data.

2. Different views from the perspective of different disciplinaries: different 

applications in an integrated system may require substantially different 

views of the shared data. For example, in designing a building column, 

architectural engineers are interested in the geometry and color of the 

column, structural engineers are concerned about the geometry, section 

modulus, stress and deformation of the column, and designers are 

concerned with the geometry and the type of the standard rolled shape of 

the column.
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3. Volatility: different engineering data may have different lifetime. For 

example, the data used for and generated from structural analysis software 

can be seen as derived data from the primary data. These data are highly 

volatile since only a small fraction of the data need be stored in a 

permanent database after the analysis. However, this volatile data should 

be stored during the analysis activity. The data describing structural 

geometry and design specifications are of a more permanent nature.

4. Constraints: engineering data is often subjected to many constraints. 

Some constraints may not be simply expressed as allowable ranges of a 

certain value. Application code is often needed to perform the validation 

checking.

An ideal DBMS for engineering data should have the capability of

handling these features in a simple and natural way.

13.6 Overview of DBMSs for Engineering Software

The importance of DBMSs for engineering computation has been

recognized for many years, and many approaches have been proposed or

developed.

Felippa (1989) has developed several database systems for primary and 

secondary memory management. These systems are mainly for supporting finite 

element analysis in a FORTRAN programming environment and of hierarchical 

and network database management types.

A system called EDIPAS (Engineering Data Interactive Presentation and 

Analysis System) has been developed at the National Aerospace Laboratory of 

the Netherlands (Steenbergen e t al., 1986). It is built around a commercially 

available DBMS. It is a sophisticated hierarchical database management system. 

The basic entity of EDIPAS is the datablock. One datablock contains
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interrelated data defined by the user. Each data item, a scalar or a matrix, is 

identified by a name. Data blocks are organized in one or more multi-level 

hierarchical structures.

An extended relational model is used in the work by Arora et al. (Arora et 

al., 1988; Mukhopadhyay et al., 1987; Murthy et al., 1986a, 1986b) at the

University of Iowa. A relation is seen as a two-dimensional array and each of 

the columns of the array has a unique definition. Thus the concept of a 

relational table is generalized such that a matrix can be seen as a special case of 

a relational table.

These existing systems are of older generation systems and can not

efficiently handle complicated engineering data. An object-oriented database 

management system is the best choice at the present time.

Powell et al. (1988a, 1988b) have envisioned an integrated software system 

for structural design activities based on object-oriented programming and data 

management concepts. The architecture of such a  system is illustrated in Figure 

13.3. This system has an object-oriented central database containing a

repository for a geometric model of the structure, material property data, and 

other data th a t m ust be shared by the application programs. This database 

ensures overall consistency of data, but does not have application-specific 

capabilities. The database is under the control of a full-featured DBMS.

To perform design operations, objects are extracted from the central 

database, and operated on by an application program in a local or application- 

specific database. The local database also stores large amounts of data specific 

to the application. When the activities of the application are successfully 

performed, desired objects in the local database are reinserted to  the central 

database. Thus, objects are moved between the central database, the local 

database and the applications. The central database is concerned with 

maintaining a common view of each object, from which applications can extract
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Figure 13.3 Configuration of an integrated system with local databases

specific views. It m aintains the overall consistency of the data. The system 

envisioned by Powell provides a viable approach for integrated engineering 

software systems.

13.7 Integrating an ODBMS with the SESDE

The development of an ODBMS for the use in the SESDE is a major effort 

and cannot be done in a limited time in a university environment. It is 

therefore not feasible nor necessary to develop the DBMS component here for 

the SESDE from scratch. A commercial ODBMS such as the ObjectStore by 

Object Design or Ontos by Ontologic should be utilized to establish the data 

management facilities in the SESDE. Along this line, some necessary facilities 

need be developed around the commercial ODBMS for the integration.
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13.7.1 A View Transformation Manager

One of the facilities is the object View Transformation Manager (VTM). 

The VTM should be built on the top of the ODBMS and be a general facility 

capable of transforming objects of any class from one view to another. An 

object description language must be defined so that the characteristics such as 

type, length, range, etc. of named fields (or instance variables) of object classes 

can be described. A main view can be defined in the language for a class of 

persistent objects stored in a database containing the complete information of 

all fields in objects of the class. Other views of the same set of objects can also 

be defined in the language describing the relationships between the named fields 

in a particular view with the fields in the main view. The VTM interprets the 

descriptions written in the language, retrieves objects from the database, and 

generates the objects of the desired class. These generated objects will be stored 

in another database or be passed to a particular application.

W ith the VTM, the configuration of a typical integrated system is shown 

in Pig. 13.4. The integrated system will have a central database containing the 

completed and shared information of the objects shared by the applications of 

the system. Each application may have its own local database storing objects 

generated from views of the objects stored in the central database and objects 

specifically for the particular application. The VTM transforms objects between 

the local and the central databases according to the description of these object 

classes. All central and local databases are managed by the ODBMS.

13.7.2 An Input Manager

The other facility is an Input Manager. In most recent applications, 

computer graphics and graphical user interfaces are utilized to input data 

graphically. However, in many cases it is still necessary for applications to input 

data textually, i.e., input from ASCII files. An application usually requires the
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input data in a file ordered in a strict predefined sequence so that the 

application can read the data accordingly. Thus, the portion of code dealing 

with data input and the data file are tightly bound with this predefined 

sequence. Moreover, this portion of code also have to perform validation 

checking of input data. It is the most cumbersome and error-prone portion in 

many programs.

To release the strict correspondence between the code dealing with data 

input and the input data sequence, an input manager is necessary. The input 

manager is responsible for handling the data input and validation process for 

applications. It interprets the definition of object classes written in the object 

description language discussed in the preceding sub-section, reads objects of 

these classes from data files according to the definitions, and generates objects of 

the desired classes. These generated objects may be stored in a database via the 

ODBMS. It should also handle data of atomic types as well. A particular 

application may inquire the ODBMS to obtain the necessary data objects 

without explicitly processing the data files.

13.7.3 In-Core Object Management

As discussed previously, in-core object management includes transferring 

objects between code units and mixed control of object transaction. This 

capability can be implemented by either enhancing the ODBMS integrated with 

the SESDE or building facilities based on the ODBMS. This depends on the 

specific features of the particular ODBMS integrated with the SESDE.
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CHAPTER 14 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK ON SESDE

14.1 The Problems and the Solution

The critical issue addressed in this work is the reusability of software for 

research and instruction in a university environment. Because of the lack of 

reusability of existing software, the development of research and instructional 

software is usually slow, time consuming, and low in quality. This work is 

directed at the design and development of the framework for a domain-specific 

Structural Engineering Software Development Environment (SESDE) as a 

solution to the software problems in structural engineering computing. The 

completion of SESDE should provide a systematic support for software reuse 

and also serve as a crucial layer between structural engineering applications and 

the evolving computer technology.

The software development approach adopted in this work is quite different 

from the traditional structured programming approach. Most existing research 

and instructional software systems in structural engineering were developed 

using the traditional approach. As a result, these programs are often one-of-a- 

kind in that the components of a program are specially designed for a specific 

application. These components are not generally reusable or may be reused only 

at a very low level. In most cases, each application is developed from scratch 

and can not take full advantage of previous development. This leads to the 

following common problems: long development times, low quality, and difficult 

maintenance. Also, these programs may be hard to survive or require a 

considerable amount of time to modify, if the computing environment 

(hardware, operating system, etc.) on which these systems are based is changed.
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Herein, the focus is on object-oriented programming and software 

reusability. Object-oriented programming methodology emphasizes the

abstractions of entities in a specific domain rather than each individual

application. Each abstraction may be implemented as an object class or a

reusable component, and the relations between these abstractions can be utilized 

in the design and implementation of reusable components. Software

development efforts are intentionally accumulated in terms of reusable 

components and are capable of being utilized efficiently in further development. 

A specific application in the domain can be constructed utilizing these reusable 

components, and new reusable components may be developed along with the 

implementation of the specific application. This approach leads to higher 

software reusability, higher productivity, quality, flexibility for modification and 

extensibility. However, this approach requires a large start-up effort to create a 

set of basic reusable components for a specific domain.

Based on the concept of software reusability and to provide a systematic 

support to software development in the domain of structural engineering, a 

Structural Engineering Software Development Environment (SESDE) has been 

envisioned in the present work. The architecture of SESDE is shown in Figure

14.1 where the components of the SESDE are enclosed in the dashed box. 

SESDE consists of reusable components (solid boxes in Fig. 14.1) and CASE 

tools (dotted boxes). The reusable components are classified in the following 

four groups:

1. A Graphical User Interface Development System (GUIDES). GUIDES 

implements a set of GUI tools for applications to build their interface.

2. An Object-oriented Database Management System (ODBMS). ODBMS 

provides the database management facility for applications.

3. A Generic Object Class Library. This library contains general-purpose 

object classes whose use is not limited to structural engineering.
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Figure 14.1 Architecture of the SESDE

4. A Structural Engineering Specific Object Class Library. Specific sets of 

object classes are contained in this library to facilitate structural 

engineering applications software development.

Three CASE tools are envisioned for the SESDE: (1) A GUI construction 

tool, (2) An object class library management tool, and (3) A structural 

engineering application development tool.

Present achievements on development of the SESDE are summarized in 

the next section.
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14.2 Summary of the Present Work on SESDE

The complete development of the SESDE requires a major effort. The 

present work has built a basic framework of the SESDE and established a model 

of such an environment for other engineering areas. The architecture and major 

components of this environment have been identified as shown in Figure 14.1. 

General requirements for various components have been established. GUIDES 

and a set of classes in the generic object class library have been fully designed 

and implemented. The present work provides a foundation for a complete 

development of the SESDE. The tasks achieved are listed in the following sub­

sections.

14.2.1 The Graphical User Interface Development System

Interactive graphical user interfaces are an essential part of modern 

engineering software. However, the code which handles the graphical user- 

interface is often complex and difficult to debug and modify. It accounts for a 

significant portion of the code of interactive graphics applications. Therefore, 

the design and implementation of the user interface of a program is a very 

im portant but difficult task. A Graphical User Interface Development System, 

GUIDES, which is a set of reusable components, has been developed in the 

present work to allow rapid generation and modification of graphical user 

interfaces, and to provide a crucial layer between applications software and the 

various evolving user-interface environments.

The development of GUIDES has been described in PART TWO. 

GUIDES is similar in many aspects with the emerging industry GUI standard 

OSF/Motif. GUIDES provides programmers with a reasonably complete set of 

user-interface tools such as menus and dialogue boxes. It provides an Interface 

Description Language to achieve a better separation between the user-interface 

and other components of an application. Applications can use this language to
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specify their user-interfaces independently of the application-specific code. 

Applications communicate with GUIDES at runtime through a procedural 

interface such that GUIDES is usable with both procedural languages (such as C 

and FORTRAN) and object-oriented languages (such as C++).

GUIDES have two im portant features which have not been well addressed 

in Motif: (l) GUIDES works with a three-dimensional interactive graphics 

package naturally and compatibly; and (2) Not only the static appearance but 

also the dynamic behavior of a GUI may be specified in the GUIDES description 

language. It is expected tha t any application based on GUIDES can be easily 

modified in the future to interface with a standard GUI system that combines 

with a three-dimensional interactive graphics capability.

In current structural engineering applications, GUIDES has been used in 

the development of STARPACK: a finite element analysis response visualization 

program. Furthermore, GUIDES has been used presently in the Computer 

Graphics course taught a t the Civil Engineering School of Purdue University as 

an illustration of GUI technology.

14.2.2 The Generic Object Class Library

A set of classes in the generic object class library has been developed in the 

C + +  language and described in PART THREE. These classes represent and 

implement commonly used entities and utilities in engineering software. This 

development demonstrates the feasibility of object-oriented approaches for 

engineering software, and also provides models for the development of other 

reusable components. These classes can be subdivided into three groups:

1. Object classes for general data structures and general utilities. These

include classes for general data structures such as text string, vector,

extensible array, and for general utilities such as error-handling and on-
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line argument processing utilities.

2. Object classes for full matrices. Six classes are included in this group. A

Matrix class is developed which represents general full matrices and

implements general matrix operations. Five other classes are developed as 

derived classes of the Matrix class. Each of the derived classes represents 

matrices with a specific characteristic and implements related operations. 

Operators are overloaded with most matrix operations such that these 

operations may be coded in a more expressive and abstract fashion.

3. Object classes for sparse matrices. Two abstract classes are developed to

represent two types of sparse matrix abstractions: unknown-based and 

node-based. Derived from the two abstract classes respectively, several 

classes are developed which implement different sparse matrix storage 

schemes including the active-column scheme and the graph-based scheme.

Object classes in this library are basic reusable components. They may be 

used readily in any research and instructional software development based upon 

the C + +  language. They may be used directly in application programs, or be 

used to build more complex generic and structural engineering specific object 

classes. For example, the full matrix classes may be used directly to develop 

programs where matrix operation is the major operation, and may be used in 

building an element class for finite element analysis.

14.2.3 The Object-oriented Database Management System

A database management system in an integrated engineering computing 

environment is responsible for the data transfer from the user to an application, 

between code units in an application program, and between different 

applications. This system is vital to the development of standardized reusable 

components and to the integration of reusable components into applications.
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The characteristics of engineering data and the database management 

requirements for integrated engineering computation environments have been 

critically reviewed and discussed in Chapter 13. It is concluded tha t the object- 

oriented database management should be used for integrated engineering 

computation environments. However, the database management aspects of the 

SESDE have not been implemented in the current research. The development 

of an ODBMS for the use in the SESDE is a major effort. A commercial 

ODBMS should probably be integrated and adapted to support the features of 

the SESDE. However, since such an ODBMS is not readily available a t Purdue 

at the present time, no development work regarding the integration of an 

ODBMS with the SESDE has been attem pted here, but specific issues associated 

with the integration have been given.

14.3 Specific Recommendations for Follow-up Work on SESDE

The SESDE has already made some impacts on research and instructional 

software development in structural engineering computing at Purdue, but its 

full potential can be realized only when a large number of reusable components 

are developed in the follow-up work. The necessary follow-up work of the 

SESDE should focus on both long-term development and short-term application 

of the SESDE components. To this end, the specific tasks in long-term and in 

short term are suggested in the following sub-sections.

14.3.1 Long-term Tasks

The goal of long-term tasks is to complete the SESDE system 

development. Regarding to each major group of reusable components and 

CASE tools, the following tasks are suggested.
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1. The Graphical User Interface Development System: GUIDES can be 

further entranced by: (l) the development of more user-interface tools 

utilizing existing GUIDES agents; (2) the modification of the GUIDES code 

to utilize the CLOOP utility in order to improve the extensibility of 

GUIDES agents.

2. The Object-oriented Database Management System: The ODBMS is 

essential for the development of structural engineering specific 

components. Structural engineering specific components, including such 

components used in finite element analysis, may be developed without an 

ODBMS. However, the ODBMS is a must for the standardization, 

flexibility and extensibility of these components. The development of an 

ODBMS for the SESDE can better be approached by integrating a 

commercial ODBMS. However, if this integration is not possible, an 

ODBMS with limited basic functionality may be developed. As a direct 

application of the ODBMS and GUIDES, a management program of a 

semi-rigid beam-to-column steel building connections databank may be 

developed since a substantial amount of data for semi-rigid beam-to- 

column steel building connections has already been collected a t Purdue 

University.

3. The Structural Engineering Specific Object Class Library: Many 

components in this library may be developed with a project of a finite 

element platform. This platform is for finite element testing, development, 

and analysis. This platform composed of reusable software components or 

object classes for finite element analysis may include the following sets of 

classes for: (1) structural and solid elements; (2) constitutive models; (3) 

linear, nonlinear, and transient analysis methods; (4) global solution 

algorithms; and (5) schemes for integration of rate-constitutive equations 

for finite element analysis. These classes can be selected and combined to 

build various executable programs involving any specific combination of
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finite element techniques.

4. The Generic Object Class Library: A set of generic object classes has been 

developed in the present work. These classes may be used as basic 

building blocks in the development of structural engineering specific object 

classes as mentioned above. In the future development of specific classes 

and specific applications, effort need to be spent to explore the abstractions 

with general characteristics. Such abstractions may be developed as 

generic object classes and stored in this library.

5. The CASE Tools: The development of CASE tools of the SESDE presently 

has a  lower priority than of the reusable components. However, when a 

large number of reusable components are developed, the development of 

the object class library management tool will become essential. Also, in 

order to prompt the use of GUIDES, the graphical user interface 

construction tool will be necessary to release application developers from 

learning the GUIDES description language.

Object-oriented programming and software reusability technique have 

shown a great potential in engineering software development, maintenance, 

modification and extension. However, to realize this potential, engineering 

software developers have to be well trained in software engineering, object- 

oriented programming and object-oriented languages. This is essential for the 

long-term development of the SESDE.

14.3.2 Short-term Tasks

The short-term tasks are focussed on the promotion of the use of existing 

reusable components. At the present time, the forseeable short-term tasks are 

around the application of GUIDES and its associated utilities. These tasks are 

described in the following:
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The development of the FORTRAN Language interface for GUIDES. An 

attem pt has been made in the design of GUIDES to make it usable with 

both C and FORTRAN languages. However, a complete FORTRAN 

interface of GUIDES has not been made available in the present work. 

Since FORTRAN is still the major language for engineering applications, 

the FORTRAN interface is an urgent need at the present.

The development of graphical utilities associated with GUIDES. Graphical 

utilities are graphical tools implementing specific functionalities commonly 

used in engineering applications. Typical examples are an X-Y Plot 

Manager and a File Manager. They should have procedural interfaces, the 

same as the GUIDES, and may be used as "black-boxes" in procedural 

languages. Used together with GUIDES, these utilities may facilitate 

greatly application software development.

The development of pre- and post-processing programs utilizing GUIDES 

and GUIDES associated graphical utilities for structural analysis programs. 

This will serve to further test the concepts and approaches that have been 

designed and implemented in the present work. Several programs of this 

type may be developed for different types of structural analysis such as 

two-dimensional finite element analysis and frame analysis. A pre­

processing program allows the end users to define and to modify the 

definition of a structural analysis problem interactively and graphically. A 

post-processing program allows the end users to display the analysis results 

interactively. These programs may communicate with analysis programs 

through flat-files with pre-determined formats for the time being before 

the ODBMS becomes available.
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